Intracellular viscoelasticity of HeLa cells during cell division studied by video particle-tracking microrheology

2013 ◽  
Vol 19 (1) ◽  
pp. 011008 ◽  
Author(s):  
Yin-Quan Chen ◽  
Chia-Yu Kuo ◽  
Ming-Tzo Wei ◽  
Kelly Wu ◽  
Pin-Tzu Su ◽  
...  
Author(s):  
Eric M. Furst ◽  
Todd M. Squires

The fundamentals and best practices of multiple particle tracking microrheology are discussed, including methods for producing video microscopy data, analyzing data to obtain mean-squared displacements and displacement correlations, and, critically, the accuracy and errors (static and dynamic) associated with particle tracking. Applications presented include two-point microrheology, methods for characterizing heterogeneous material rheology, and shell models of local (non-continuum) heterogeneity. Particle tracking has a long history. The earliest descriptions of Brownian motion relied on precise observations, and later quantitative measurements, using light microscopy.


2020 ◽  
Author(s):  
Robert F. Hawkins ◽  
Gregg A. Duncan

AbstractIn this work, we report the development of a simplified microrheological method that can be used to rapidly study soft materials. This approach uses fluorescence polarization and a plate reader format to measure the rotational diffusion of nanoparticles within a sample of interest. We show that this measurement is sensitive to viscosity-dependent changes in polymeric soft materials and is correlated with particle tracking microrheology, a previously validated measure of microrheology. Using these fluorescence polarization-based measurements, we describe formalism that enables reasonable estimation of viscosity in polymeric materials after accounting for length-scale dependent effects of the polymer environment on the nanoparticle rotational diffusion. The use of a plate reader format allows this approach to be higher throughput, less technically challenging, and more widely accessible than standard macro- and microrheological methods, making it available to non-experts. This approach has potential applications in academic and industry settings where conventional rheological equipment may not be available, as well as in clinical settings to rapidly characterize human clinical samples.


Biopolymers ◽  
2014 ◽  
Vol 101 (4) ◽  
pp. 366-377 ◽  
Author(s):  
Pantelis Georgiades ◽  
Paul D. A. Pudney ◽  
David J. Thornton ◽  
Thomas A. Waigh

2020 ◽  
Vol 39 ◽  
pp. 98-109 ◽  
Author(s):  
Pei-Hsun Wu ◽  
Sanjiv Sam Gambhir ◽  
Christopher M. Hale ◽  
Wei-Chiang Chen ◽  
Denis Wirtz ◽  
...  

Langmuir ◽  
2011 ◽  
Vol 27 (10) ◽  
pp. 6171-6178 ◽  
Author(s):  
Mohammad Mydul Alam ◽  
Raffaele Mezzenga

2010 ◽  
Vol 81 (1) ◽  
Author(s):  
Dirk van den Ende ◽  
Eko H. Purnomo ◽  
Michel H. G. Duits ◽  
Walter Richtering ◽  
Frieder Mugele

2003 ◽  
Vol 14 (6) ◽  
pp. 2436-2446 ◽  
Author(s):  
Guy Keryer ◽  
Oliwia Witczak ◽  
Annie Delouvée ◽  
Wolfram A. Kemmner ◽  
Danielle Rouillard ◽  
...  

Centrosomes provide docking sites for regulatory molecules involved in the control of the cell division cycle. The centrosomal matrix contains several proteins, which anchor kinases and phosphatases. The large A-Kinase Anchoring Protein AKAP450 is acting as a scaffolding protein for other components of the cell signaling machinery. We selectively perturbed the centrosome by modifying the cellular localization of AKAP450. We report that the expression in HeLa cells of the C terminus of AKAP450, which contains the centrosome-targeting domain of AKAP450 but not its coiled-coil domains or binding sites for signaling molecules, leads to the displacement of the endogenous centrosomal AKAP450 without removing centriolar or pericentrosomal components such as centrin, γ-tubulin, or pericentrin. The centrosomal protein kinase A type II α was delocalized. We further show that this expression impairs cytokinesis and increases ploidy in HeLa cells, whereas it arrests diploid RPE1 fibroblasts in G1, thus further establishing a role of the centrosome in the regulation of the cell division cycle. Moreover, centriole duplication is interrupted. Our data show that the association between centrioles and the centrosomal matrix protein AKAP450 is critical for the integrity of the centrosome and for its reproduction.


Sign in / Sign up

Export Citation Format

Share Document