scholarly journals Intraoperative brain tumor resection with indocyanine green using augmented microscopy

2018 ◽  
Vol 23 (09) ◽  
pp. 1 ◽  
Author(s):  
Jeffrey R. Watson ◽  
Nikolay Martirosyan ◽  
G. Michael Lemole ◽  
Theodore P. Trouard ◽  
Marek Romanowski
2021 ◽  
Author(s):  
Yue Sun ◽  
Zilan Wang ◽  
Fan Jiang ◽  
Xingyu Yang ◽  
Tan Xin ◽  
...  

Abstract Background: When it comes to central nervous system tumor resection, preserving vital venous structures to avoid devastating consequences such as brain edema and hemorrhage is important. Wheras, in clinical practice, it is difficult to obtain clear and vivid intraoperative venous visualization and blood flow analysis.Methods: We presented our clinical cases to demonstrate the process of venous preservation during surgical resection through the application of indocyanine green videoangiography (ICG-VA) integrated with FLOW 800. Galen vein, sylvian vein and superior cerebral veins of the brain were included.Results: Clear documentations of the veins from different venous groups were obtained via ICG-VA integrated with FLOW 800, which semiquantitatively analyzed the flow dynamics. ICG-VA integrated with FLOW 800 enabled us to achieve brain tumor resection without venous injury and obstructing the venous flux.Conclusions: ICG-VA integrated with FLOW 800 is an efficient method for venous preservation, though further comparison between ICG-VA integrated with FLOW 800 and other techniques of intraoperative blood flow monitoring is needed.


2022 ◽  
Author(s):  
yue sun ◽  
Zilan Wang ◽  
Fan Jiang ◽  
Xingyu Yang ◽  
Xin Tan ◽  
...  

Abstract Background: When it comes to central nervous system tumor resection, preserving vital venous structures to avoid devastating consequences such as brain edema and hemorrhage is important. Wheras, in clinical practice, it is difficult to obtain clear and vivid intraoperative venous visualization and blood flow analysis.Methods: We retrospectively reviewed patients underwent brain tumor resection through the application of indocyanine green videoangiography (ICG-VA) integrated with FLOW 800 from February 2019 to December 2020 and presented our clinical cases to demonstrate the process of venous preservation. Galen vein, sylvian vein and superior cerebral veins were included in our cases.Results: Clear documentations of the veins from different venous groups were obtained via ICG-VA integrated with FLOW 800, which semiquantitatively analyzed the flow dynamics. ICG-VA integrated with FLOW 800 enabled us to achieve brain tumor resection without venous injury and obstructing the venous flux.Conclusions: ICG-VA integrated with FLOW 800 is an available method for venous preservation, though further comparison between ICG-VA integrated with FLOW 800 and other techniques of intraoperative blood flow monitoring is needed.


2021 ◽  
Vol 163 (5) ◽  
pp. 1257-1267 ◽  
Author(s):  
Anne-Laure Lemaitre ◽  
Guillaume Herbet ◽  
Hugues Duffau ◽  
Gilles Lafargue

Author(s):  
Hamed Azarnoush ◽  
Gmaan Alzhrani ◽  
Alexander Winkler-Schwartz ◽  
Fahad Alotaibi ◽  
Nicholas Gelinas-Phaneuf ◽  
...  

Author(s):  
Shaun E. Gruenbaum ◽  
Christian S. Guay ◽  
Benjamin F. Gruenbaum ◽  
Aidos Konkayev ◽  
Andrea Falegnami ◽  
...  

2021 ◽  
Author(s):  
Xiu-Heng Zhang ◽  
Heng Zhang ◽  
Zhen Li ◽  
Gui-Bin Bian

Abstract Three-dimensional force perception is critically important in the enhancement of human force perception to minimize brain injuries resulting from excessive forces applied by surgical instruments in robot-assisted brain tumor resection. And surgeons are not responsive enough to interpret tool-tissue interaction forces. In previous studies, various force measurement techniques have been published. In neurosurgical scenarios, there are still some drawbacks to these presented approaches to forces perception. Because of the narrow, and slim configuration of bipolar forceps, three-dimensional contact forces on forceps tips is not easy to be traced in real-time. Five fundamental acts of handling bipolar forceps are poking, opposing, pressing, opening, and closing. The first three acts independently correspond to the axial force of z, x, y. So, in this paper, typical interactions between bipolar forceps and brain tissues have been analyzed. A three-dimensional force perception technique to collect force data on bipolar forceps tips by installing three Fiber Bragg Grating Sensors (FBGs) on each prong of bipolar forceps in real-time is proposed. Experiments using a tele-neurosurgical robot were performed on an in-vitro pig brain. In the experiments, three-dimensional forces were tracked in real-time. It is possible to experience forces at a minimum of 0.01 N. The three-dimensional force perception range is 0-4 N. The calibrating resolution on x, y, and z, is 0.01, 0.03, 0.1 N, separately. According to our observation, the measurement accuracy precision is over 95%.


2016 ◽  
Vol 18 (suppl 3) ◽  
pp. iii129.2-iii129
Author(s):  
Salinas Sanz Jose Antonio ◽  
Brell Doval Marta ◽  
Ibañez Dominguez Javier ◽  
Guibelalde del Castillo Mercedes ◽  
Rocabado Quintana Sergio Alejandro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document