Adaptive coding-unit size selection based on hierarchical quad-tree correlations for high-efficiency video coding

2015 ◽  
Vol 24 (2) ◽  
pp. 023036 ◽  
Author(s):  
Lilin Guo ◽  
Lunan Zhou ◽  
Xiang Tian ◽  
Yaowu Chen
Author(s):  
Mohammad Barr

Background: High-Efficiency Video Coding (HEVC) is a recent video compression standard. It provides better compression performance compared to its predecessor, H.264/AVC. However, the computational complexity of the HEVC encoder is much higher than that of H.264/AVC encoder. This makes HEVC less attractive to be used in real-time applications and in devices with limited resources (e.g., low memory, low processing power, etc.). The increased computational complexity of HEVC is partly due to its use of a variable size Transform Unit (TU) selection algorithm which successively performs transform operations using transform units of different sizes before selecting the optimal transform unit size. In this paper, a fast transform unit size selection method is proposed to reduce the computational complexity of an HEVC encoder. Methods: Bayesian decision theory is used to predict the size of the TU during encoding. This is done by exploiting the TU size decisions at a previous temporal level and by modeling the relationship between the TU size and the Rate-Distortion (RD) cost values. Results: Simulation results show that the proposed method achieves a reduction of the encoding time of the latest HEVC encoder by 16.21% on average without incurring any noticeable compromise on its compression efficiency. The algorithm also reduces the number of transform operations by 44.98% on average. Conclusion: In this paper, a novel fast TU size selection scheme for HEVC is proposed. The proposed technique outperforms both the latest HEVC reference software, HM 16.0, as well as other state-of-the-art techniques in terms of time-complexity. The compression performance of the proposed technique is comparable to that of HM 16.0.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jinchao Zhao ◽  
Yihan Wang ◽  
Qiuwen Zhang

With the development of technology, the hardware requirement and expectations of user for visual enjoyment are getting higher and higher. The multitype tree (MTT) architecture is proposed by the Joint Video Experts Team (JVET). Therefore, it is necessary to determine not only coding unit (CU) depth but also its split mode in the H.266/Versatile Video Coding (H.266/VVC). Although H.266/VVC achieves significant coding performance on the basis of H.265/High Efficiency Video Coding (H.265/HEVC), it causes significantly coding complexity and increases coding time, where the most time-consuming part is traversal calculation rate-distortion (RD) of CU. To solve these problems, this paper proposes an adaptive CU split decision method based on deep learning and multifeature fusion. Firstly, we develop a texture classification model based on threshold to recognize complex and homogeneous CU. Secondly, if the complex CUs belong to edge CU, a Convolutional Neural Network (CNN) structure based on multifeature fusion is utilized to classify CU. Otherwise, an adaptive CNN structure is used to classify CUs. Finally, the division of CU is determined by the trained network and the parameters of CU. When the complex CUs are split, the above two CNN schemes can successfully process the training samples and terminate the rate-distortion optimization (RDO) calculation for some CUs. The experimental results indicate that the proposed method reduces the computational complexity and saves 39.39% encoding time, thereby achieving fast encoding in H.266/VVC.


2020 ◽  
Vol 10 (2) ◽  
pp. 496-501
Author(s):  
Wen Si ◽  
Qian Zhang ◽  
Zhengcheng Shi ◽  
Bin Wang ◽  
Tao Yan ◽  
...  

High Efficiency Video Coding (HEVC) is the next generation video coding standard. In HEVC, 35 intra prediction modes are defined to improve coding efficiency, which result in huge computational complexity, as a large number of prediction modes and a flexible coding unit (CU) structure is adopted in CU coding. To reduce this computational burden, this paper presents a gradient-based candidate list clipping algorithm for Intra mode prediction. Experimental results show that the proposed algorithm can reduce 29.16% total encoding time with just 1.34% BD-rate increase and –0.07 dB decrease of BD-PSNR.


Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 703
Author(s):  
Jin Young Lee

High Efficiency Video Coding (HEVC) is the most recent video coding standard. It can achieve a significantly higher coding performance than previous video coding standards, such as MPEG-2, MPEG-4, and H.264/AVC (Advanced Video Coding). In particular, to obtain high coding efficiency in intra frames, HEVC investigates various directional spatial prediction modes and then selects the best prediction mode based on rate-distortion optimization. For further improvement of coding performance, this paper proposes an enhanced intra prediction method based on adaptive coding order and multiple reference sets. The adaptive coding order determines the best coding order for each block, and the multiple reference sets enable the block to be predicted from various reference samples. Experimental results demonstrate that the proposed method achieves better intra coding performance than the conventional method.


Sign in / Sign up

Export Citation Format

Share Document