Real-world pedestrian detection method enhanced by semantic segmentation

2019 ◽  
Vol 28 (01) ◽  
pp. 1
Author(s):  
Qihua Peng
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Zhongmin Liu ◽  
Zhicai Chen ◽  
Zhanming Li ◽  
Wenjin Hu

In recent years, techniques based on the deep detection model have achieved overwhelming improvements in the accuracy of detection, which makes them being the most adapted for the applications, such as pedestrian detection. However, speed and accuracy are a pair of contradictions that always exist and have long puzzled researchers. How to achieve the good trade-off between them is a problem we must consider while designing the detectors. To this end, we employ the general detector YOLOv2, a state-of-the-art method in the general detection tasks, in the pedestrian detection. Then we modify the network parameters and structures, according to the characteristics of the pedestrians, making this method more suitable for detecting pedestrians. Experimental results in INRIA pedestrian detection dataset show that it has a fairly high detection speed with a small precision gap compared with the state-of-the-art pedestrian detection methods. Furthermore, we add weak semantic segmentation networks after shared convolution layers to illuminate pedestrians and employ a scale-aware structure in our model according to the characteristics of the wide size range in Caltech pedestrian detection dataset, which make great progress under the original improvement.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1240
Author(s):  
Yang Liu ◽  
Hailong Su ◽  
Cao Zeng ◽  
Xiaoli Li

In complex scenes, it is a huge challenge to accurately detect motion-blurred, tiny, and dense objects in the thermal infrared images. To solve this problem, robust thermal infrared vehicle and pedestrian detection method is proposed in this paper. An important weight parameter β is first proposed to reconstruct the loss function of the feature selective anchor-free (FSAF) module in its online feature selection process, and the FSAF module is optimized to enhance the detection performance of motion-blurred objects. The proposal of parameter β provides an effective solution to the challenge of motion-blurred object detection. Then, the optimized anchor-free branches of the FSAF module are plugged into the YOLOv3 single-shot detector and work jointly with the anchor-based branches of the YOLOv3 detector in both training and inference, which efficiently improves the detection precision of the detector for tiny and dense objects. Experimental results show that the method proposed is superior to other typical thermal infrared vehicle and pedestrian detection algorithms due to 72.2% mean average precision (mAP).


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Tao Xiang ◽  
Tao Li ◽  
Mao Ye ◽  
Zijian Liu

Pedestrian detection with large intraclass variations is still a challenging task in computer vision. In this paper, we propose a novel pedestrian detection method based on Random Forest. Firstly, we generate a few local templates with different sizes and different locations in positive exemplars. Then, the Random Forest is built whose splitting functions are optimized by maximizing class purity of matching the local templates to the training samples, respectively. To improve the classification accuracy, we adopt a boosting-like algorithm to update the weights of the training samples in a layer-wise fashion. During detection, the trained Random Forest will vote the category when a sliding window is input. Our contributions are the splitting functions based on local template matching with adaptive size and location and iteratively weight updating method. We evaluate the proposed method on 2 well-known challenging datasets: TUD pedestrians and INRIA pedestrians. The experimental results demonstrate that our method achieves state-of-the-art or competitive performance.


2015 ◽  
Vol 738-739 ◽  
pp. 538-541
Author(s):  
Fu Qiang Zhou ◽  
Yan Li

This paper presents novel pedestrian detection approach in video streaming, which could process frames rapidly. The method is based on cascades of HOG-LBP (Histograms of Oriented Gradients-Local Binary Pattern), but combines non-negative factorization to reduce the length of the feature, aiming at realizing a more efficient way of detection, remedying the slowness of the original method. Experiments show our method can process faster than HOG and HOG-LBP, and more accurate than HOG, which has better performance in pedestrian detection in video streaming.


2012 ◽  
Vol 542-543 ◽  
pp. 937-940
Author(s):  
Ping Shu Ge ◽  
Guo Kai Xu ◽  
Xiu Chun Zhao ◽  
Peng Song ◽  
Lie Guo

To locate pedestrian faster and more accurately, a pedestrian detection method based on histograms of oriented gradients (HOG) in region of interest (ROI) is introduced. The features are extracted in the ROI where the pedestrian's legs may exist, which is helpful to decrease the dimension of feature vector and simplify the calculation. Then the vertical edge symmetry of pedestrian's legs is fused to confirm the detection. Experimental results indicate that this method can achieve an ideal accuracy with lower process time compared to traditional method.


Sign in / Sign up

Export Citation Format

Share Document