Selection and evaluation of optimal segmentation scale for high-resolution remote sensing images based on prior thematic maps and image features

2019 ◽  
Vol 13 (01) ◽  
pp. 1
Author(s):  
Fang Wang ◽  
Wunian Yang ◽  
Jintong Ren
2021 ◽  
Vol 13 (22) ◽  
pp. 4528
Author(s):  
Xin Yang ◽  
Lei Hu ◽  
Yongmei Zhang ◽  
Yunqing Li

Remote sensing image change detection (CD) is an important task in remote sensing image analysis and is essential for an accurate understanding of changes in the Earth’s surface. The technology of deep learning (DL) is becoming increasingly popular in solving CD tasks for remote sensing images. Most existing CD methods based on DL tend to use ordinary convolutional blocks to extract and compare remote sensing image features, which cannot fully extract the rich features of high-resolution (HR) remote sensing images. In addition, most of the existing methods lack robustness to pseudochange information processing. To overcome the above problems, in this article, we propose a new method, namely MRA-SNet, for CD in remote sensing images. Utilizing the UNet network as the basic network, the method uses the Siamese network to extract the features of bitemporal images in the encoder separately and perform the difference connection to better generate difference maps. Meanwhile, we replace the ordinary convolution blocks with Multi-Res blocks to extract spatial and spectral features of different scales in remote sensing images. Residual connections are used to extract additional detailed features. To better highlight the change region features and suppress the irrelevant region features, we introduced the Attention Gates module before the skip connection between the encoder and the decoder. Experimental results on a public dataset of remote sensing image CD show that our proposed method outperforms other state-of-the-art (SOTA) CD methods in terms of evaluation metrics and performance.


2019 ◽  
Vol 11 (20) ◽  
pp. 2349 ◽  
Author(s):  
Zhengyuan Zhang ◽  
Wenhui Diao ◽  
Wenkai Zhang ◽  
Menglong Yan ◽  
Xin Gao ◽  
...  

Significant progress has been made in remote sensing image captioning by encoder-decoder frameworks. The conventional attention mechanism is prevalent in this task but still has some drawbacks. The conventional attention mechanism only uses visual information about the remote sensing images without considering using the label information to guide the calculation of attention masks. To this end, a novel attention mechanism, namely Label-Attention Mechanism (LAM), is proposed in this paper. LAM additionally utilizes the label information of high-resolution remote sensing images to generate natural sentences to describe the given images. It is worth noting that, instead of high-level image features, the predicted categories’ word embedding vectors are adopted to guide the calculation of attention masks. Representing the content of images in the form of word embedding vectors can filter out redundant image features. In addition, it can also preserve pure and useful information for generating complete sentences. The experimental results from UCM-Captions, Sydney-Captions and RSICD demonstrate that LAM can improve the model’s performance for describing high-resolution remote sensing images and obtain better S m scores compared with other methods. S m score is a hybrid scoring method derived from the AI Challenge 2017 scoring method. In addition, the validity of LAM is verified by the experiment of using true labels.


Sign in / Sign up

Export Citation Format

Share Document