Calculation of the optimal segmentation scale in object-based multiresolution segmentation based on the scene complexity of high-resolution remote sensing images

2018 ◽  
Vol 12 (02) ◽  
pp. 1 ◽  
Author(s):  
Tianjing Feng ◽  
Hairong Ma ◽  
Xinwen Cheng ◽  
Hongping Zhang
2020 ◽  
Vol 12 (14) ◽  
pp. 2334
Author(s):  
Lu Zhao ◽  
Hongyan Ren ◽  
Cheng Cui ◽  
Yaohuan Huang

High-resolution remotely sensed imageries have been widely employed to detect urban villages (UVs) in highly urbanized regions, especially in developing countries. However, the understanding of the potential impacts of spatially and temporally differentiated urban internal development on UV detection is still limited. In this study, a partition-strategy-based framework integrating the random forest (RF) model, object-based image analysis (OBIA) method, and high-resolution remote sensing images was proposed for the UV-detection model. In the core regions of Guangzhou, four original districts were re-divided into five new zones for the subsequent object-based RF-detection of UVs with a series features, according to the different proportion of construction lands. The results show that the proposed framework has a good performance on UV detection with an average overall accuracy of 90.23% and a kappa coefficient of 0.8. It also shows the possibility of transferring samples and models into a similar area. In summary, the partition strategy is a potential solution for the improvement of the UV-detection accuracy through high-resolution remote sensing images in Guangzhou. We suggest that the spatiotemporal process of urban construction land expansion should be comprehensively understood so as to ensure an efficient UV-detection in highly urbanized regions. This study can provide some meaningful clues for city managers identifying the UVs efficiently before devising and implementing their urban planning in the future.


2020 ◽  
Vol 12 (18) ◽  
pp. 2935
Author(s):  
Zixia Tang ◽  
Mengmeng Li ◽  
Xiaoqin Wang

Tea is an important economic plant, which is widely cultivated in many countries, particularly in China. Accurately mapping tea plantations is crucial in the operations, management, and supervision of the growth and development of the tea industry. We propose an object-based convolutional neural network (CNN) to extract tea plantations from very high resolution remote sensing images. Image segmentation was performed to obtain image objects, while a fine-tuned CNN model was used to extract deep image features. We conducted feature selection based on the Gini index to reduce the dimensionality of deep features, and the selected features were then used for classifying tea objects via a random forest. The proposed method was first applied to Google Earth images and then transferred to GF-2 satellite images. We compared the proposed classification with existing methods: Object-based classification using random forest, Mask R-CNN, and object-based CNN without fine-tuning. The results show the proposed method achieved a higher classification accuracy than other methods and produced smaller over- and under-classification geometric errors than Mask R-CNN in terms of shape integrity and boundary consistency. The proposed approach, trained using Google Earth images, achieved comparable results when transferring to the classification of tea objects from GF-2 images. We conclude that the proposed method is effective for mapping tea plantations using very high-resolution remote sensing images even with limited training samples and has huge potential for mapping tea plantations in large areas.


Sign in / Sign up

Export Citation Format

Share Document