Aspherical wavefront shaping with combined computer generated holograms

2013 ◽  
Vol 52 (9) ◽  
pp. 091709 ◽  
Author(s):  
Alexander G. Poleshchuk ◽  
Ruslan K. Nasyrov
2020 ◽  
Vol 56 (2) ◽  
pp. 140-149
Author(s):  
V. P. Korolkov ◽  
R. K. Nasyrov ◽  
A. G. Sedukhin ◽  
D. A. Belousov ◽  
R. I. Kuts

2021 ◽  
Author(s):  
Stefan Rothe ◽  
Philipp Daferner ◽  
Sebastian Heide ◽  
David Krause ◽  
Felix Schmieder ◽  
...  

Photonics ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 298
Author(s):  
Juan Martinez-Carranza ◽  
Tomasz Kozacki ◽  
Rafał Kukołowicz ◽  
Maksymilian Chlipala ◽  
Moncy Sajeev Idicula

A computer-generated hologram (CGH) allows synthetizing view of 3D scene of real or virtual objects. Additionally, CGH with wide-angle view offers the possibility of having a 3D experience for large objects. An important feature to consider in the calculation of CGHs is occlusion between surfaces because it provides correct perception of encoded 3D scenes. Although there is a vast family of occlusion culling algorithms, none of these, at the best of our knowledge, consider occlusion when calculating CGHs with wide-angle view. For that reason, in this work we propose an occlusion culling algorithm for wide-angle CGHs that uses the Fourier-type phase added stereogram (PAS). It is shown that segmentation properties of the PAS can be used for setting efficient conditions for occlusion culling of hidden areas. The method is efficient because it enables processing of dense cloud of points. The investigated case has 24 million of point sources. Moreover, quality of the occluded wide-angle CGHs is tested by two propagation methods. The first propagation technique quantifies quality of point reproduction of calculated CGH, while the second method enables the quality assessment of the occlusion culling operation over an object of complex shape. Finally, the applicability of proposed occlusion PAS algorithm is tested by synthetizing wide-angle CGHs that are numerically and optically reconstructed.


2021 ◽  
Vol 118 (7) ◽  
pp. 071104
Author(s):  
D. Barton ◽  
M. Lawrence ◽  
J. Dionne

Nanophotonics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 655-665
Author(s):  
Stephanie C. Malek ◽  
Adam C. Overvig ◽  
Sajan Shrestha ◽  
Nanfang Yu

AbstractActively tunable and reconfigurable wavefront shaping by optical metasurfaces poses a significant technical challenge often requiring unconventional materials engineering and nanofabrication. Most wavefront-shaping metasurfaces can be considered “local” in that their operation depends on the responses of individual meta-units. In contrast, “nonlocal” metasurfaces function based on the modes supported by many adjacent meta-units, resulting in sharp spectral features but typically no spatial control of the outgoing wavefront. Recently, nonlocal metasurfaces based on quasi-bound states in the continuum have been shown to produce designer wavefronts only across the narrow bandwidth of the supported Fano resonance. Here, we leverage the enhanced light-matter interactions associated with sharp Fano resonances to explore the active modulation of optical spectra and wavefronts by refractive-index tuning and mechanical stretching. We experimentally demonstrate proof-of-principle thermo-optically tuned nonlocal metasurfaces made of silicon and numerically demonstrate nonlocal metasurfaces that thermo-optically switch between distinct wavefront shapes. This meta-optics platform for thermally reconfigurable wavefront shaping requires neither unusual materials and fabrication nor active control of individual meta-units.


Optik ◽  
2021 ◽  
pp. 167516
Author(s):  
Shenghang Zhou ◽  
Hao Xie ◽  
Chuncheng Zhang ◽  
Yingzi Hua ◽  
Wenhui Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document