Decenter and defocus for testing aspheric surfaces

1992 ◽  
Author(s):  
Der-Shen Wan
Keyword(s):  
Optik ◽  
2021 ◽  
pp. 167082
Author(s):  
Changjun Jiao ◽  
Yong Shu ◽  
Zhen Zhang ◽  
Bo Wang ◽  
Feihai Gao

2021 ◽  
Vol 11 (3) ◽  
pp. 1200
Author(s):  
Junliu Fan ◽  
Quanying Wu ◽  
Baohua Chen ◽  
Lin Liu ◽  
Lei Chen

A Golay3 multi-mirror telescope (MMT) system is designed in this paper. The fill factor of the Golay3 MMT is derived from the angular resolution of the telescope. An initial configuration is established according to the paraxial optical theory. A three-element aspheric corrector group is designed and placed in the converging light cone to enlarge the field of view (FOV) of the Golay3 MMT. The tolerance analysis for each surface of the Golay3 MMT is conducted using the Monte Carlo method. The design results show the FOV of the Golay3 MMT system can be increased to 1.5° with the insertion of a three-element aspheric corrector group. The results of the tolerance analysis indicate that most tolerances are loose, while some decenter tolerances relating with the aspheric surfaces are relatively tight, but still within an acceptable range.


2002 ◽  
Vol 68 (665) ◽  
pp. 308-314
Author(s):  
Katsumi YAMAGUCHI ◽  
Kazuo MURATA ◽  
Seiichirou KITAGAWA ◽  
Hiroshi OHWARI ◽  
Kousuke IMAMURA ◽  
...  

2007 ◽  
Vol 364-366 ◽  
pp. 80-85
Author(s):  
Su Ping Chang ◽  
Tie Bang Xie ◽  
Xuang Ze Wang ◽  
Jun Guo

White-light interferometric technique has been widely applied in the measurement of three-dimensional profiles and roughness with high-precision. Based on the characteristic of interferometric technique, a new method combined with image location and a three-dimensional stage is proposed to achieve the non-contact absolute shape measurement for aspheric and spherical surface in a slarge range. The interference fringes vary with the horizontal displacement of the measured surface, the surface information was obtained by locating the transformation of the maximal intensity in the interferograms. Two main influence factors are discussed; they are performance of the inerferimetric microscope and the stage. Since the performance of the stage directly determines the measurement precision, a three-dimensional displacement stage with a large range and a high precision was developed. Some experiments were carried out to verify the performance of the three-dimensional displacement stage and the validity of the new measurement method with satisfactory results.


Sign in / Sign up

Export Citation Format

Share Document