Image-intensifier-based volume tomographic angiography imaging system: geometric distortion correction

Author(s):  
Ruola Ning ◽  
Jonathan K. Riek ◽  
David L. Conover
2015 ◽  
Vol 742 ◽  
pp. 252-256 ◽  
Author(s):  
Yuan Jin Li ◽  
Hua Zhong Shu ◽  
Tao Wang ◽  
Yang Wang ◽  
You Yong Kong

The distorted X-Ray Image Intensifier (XRII) image can introduce negative effect on following work for C-arm CT imaging system. In this paper, we propose an integrated approach based on least squares and Biharmonic spline interpolation to correct geometric distortions of XRII images. The method first uses morphology operation to extract the coordinate values of control points. Then the least square method fits the extracted coordinate values in every row and computes the more coordinate values by fixing the length in every row. Finally, The Biharmonic spline interpolation is used to interpolate the all coordinate values and correct the distortional XRII image. The experiment shows that the integrated method can effectively correct the distorted XRII image.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Qiucheng Sun ◽  
Yueqian Hou ◽  
Qingchang Tan ◽  
Guannan Li

Lens distortion practically presents in a real optical imaging system causing nonuniform geometric distortion in the images and gives rise to additional errors in the vision measurement. In this paper, a planar-dimensions vision measurement method is proposed by improving camera calibration, in which the lens distortion is corrected on the pixel plane of image. The method can be divided into three steps: firstly, the feature points, only in the small central region of the image, are used to get a more accurate perspective projection model; secondly, rather than defining a uniform model, the smoothing spline function is used to describe the lens distortion in the measurement region of image, and two correction functions can be obtained by fitting two deviation surfaces; finally, a measurement method for planar dimensions is proposed, in which accurate magnification factor of imaging system can be obtained by using the correction functions. The effectiveness of the method is demonstrated by applying the proposed method to the test of measuring shaft diameter. Experimental data prove that the accurate planar-dimensions measurements can be performed using the proposed method even if images are deformed by lens distortion.


1996 ◽  
Author(s):  
Ruola Ning ◽  
Xiaohui Wang ◽  
Jianjun Shen ◽  
Daofa Zhang ◽  
David L. Conover

1997 ◽  
Author(s):  
Ruola Ning ◽  
Xiaohui Wang ◽  
David L. Conover ◽  
Xiangyang Tang

Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 464
Author(s):  
Wenjie Zhang ◽  
Tianzhong Zhao ◽  
Xiaohui Su ◽  
Baoguo Wu ◽  
Zhiqiang Min ◽  
...  

Stem analysis is an essential aspect in forestry investigation and forest management, as it is a primary method to study the growth law of trees. Stem analysis requires measuring the width and number of tree rings to ensure the accurate measurement, expand applicable tree species, and reduce operation cost. This study explores the use of Open Source Computer Vision Library (Open CV) to measure the ring radius of analytic wood disk digital images, and establish a regression equation of ring radius based on image geometric distortion correction. Here, a digital camera was used to photograph the stem disks’ tree rings to obtain digital images. The images were preprocessed with Open CV to measure the disk’s annual ring radius. The error correction model based on the least-square polynomial fitting method was established for digital image geometric distortion correction. Finally, a regression equation for tree ring radius based on the error correction model was established. Through the above steps, click the intersection point between the radius line and each ring to get the pixel distance from the ring to the pith, then the size of ring radius can be calculated by the regression equation of ring radius. The study’s method was used to measure the digital image of the Chinese fir stem disk and compare it with the actual value. The results showed that the maximum error of this method was 0.15 cm, the average error was 0.04 cm, and the average detection accuracy reached 99.34%, which met the requirements for measuring the tree ring radius by stem disk analysis. This method is simple, accurate, and suitable for coniferous and broad-leaved species, which allows researchers to analyze tree ring radius measurement, and is of great significance for analyzing the tree growth process.


Sign in / Sign up

Export Citation Format

Share Document