Ultra-high frequency ultrasound biomicroscopy and high throughput cardiovascular phenotyping in a large scale mouse mutagenesis screen

2013 ◽  
Author(s):  
Xiaoqin Liu ◽  
Richard Francis ◽  
Kimimasa Tobita ◽  
Andy Kim ◽  
Linda Leatherbury ◽  
...  
Author(s):  
Carolina Ávila de Almeida ◽  
Simone Guarçoni ◽  
Bruna Duque Estrada ◽  
Maria Carolina Zafra Páez ◽  
Clarissa Canella

2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Samuel Röhl ◽  
Linnea Eriksson ◽  
Robert Saxelin ◽  
Mariette Lengquist ◽  
Kenneth Caidahl ◽  
...  

Objective: Ultrasound BioMicroscopy (UBM), or high-frequency ultrasound, is a novel technique used for assessment of anatomy and physiology small research animals. In this study, we evaluate the UBM assessment of the re-endothelialization process following denudation of the carotid artery in rats. Methods: Ultrasound BioMicroscopy data from three different experiments were analyzed. A total of 66 rats of three different strains (Sprague-Dawley, Wistar and Goto-Kakizaki) were included in this study. All animals were subjected to common carotid artery balloon injury and examined with UBM 2 and 4 weeks after injury. Re-endothelialization in UBM was measured as the length from the carotid bifurcation to the distal edge of the intimal hyperplasia. En face staining with Evans-blue dye was performed upon euthanization at 4 weeks after injury followed by tissue harvest for morphological and immunohistochemical evaluation. Results: A significant correlation (Spearman r=0.63,p<0.0001) and an agreement according to Bland-Altman test was identified when comparing all measurements of re-endothelialization in high frequency ultrasound and en face staining. Analysis by animal strain revealed a similar pattern and a significant growth in re-endothelialization length measured in UBM from 2 to 4 weeks could be identified. Immunohistochemical staining for von Willebrand factor confirmed the presence of endothelium in the areas detected as re-endothelialized by the ultrasound assessment. Conclusion: Ultrasound BioMicroscopy can be used for longitudinal in vivo assessment of the re-endothelialization following arterial injury in rats.


Author(s):  
A. W. Kastelein ◽  
B. C. de Graaf ◽  
Y. P. Latul ◽  
K. W. J. Verhorstert ◽  
J. Holthof ◽  
...  

2010 ◽  
Vol 16 (S2) ◽  
pp. 1110-1111
Author(s):  
GJ Czarnota

Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, USA, August 1 – August 5, 2010.


2020 ◽  
Vol 24 (02) ◽  
pp. 125-134 ◽  
Author(s):  
Domenico Albano ◽  
Giacomo Aringhieri ◽  
Carmelo Messina ◽  
Luca De Flaviis ◽  
Luca Maria Sconfienza

AbstractMusculoskeletal (MSK) ultrasound has well-established advantages, able to investigate very small structures with high resolution and a quick and real-time dynamic evaluation with the possibility of contralateral comparison. Thus ultrasound has kept its own almost exclusive fields of application in daily clinical practice, and it is considered the first-level imaging technique to assess tendons, bursae, and capsuloligamentous structures of small peripheral joints as well as peripheral nerves. Up to now, however, clinical MSK ultrasound imaging could not go beyond the first 1 to 2 cm under the skin, using high-frequency probes up to 18 to 20 MHz with spatial resolution just below millimeters. We present the impressive technical advancements leading to image resolution as low as 30 µm using ultra-high frequency ultrasound (UHFUS) probes up to 70 MHz. High-frequency ultrasound and UHFUS, with frequencies ranging from 22 to 70 MHz, are promising tools to evaluate very superficial structures. In the MSK system, only two articles have assessed its value in limited case series. Future developments may be aimed to better assess ultrastructural changes of very superficial peripheral nerves and other thin structures such as pulleys, retinacula, and tendons.


Sign in / Sign up

Export Citation Format

Share Document