Computer-generated holograms using medium-resolution photographic film

1995 ◽  
Author(s):  
Patrick Cogan ◽  
Pascal O'Connor
Author(s):  
C. F. Oster

Although ultra-thin sectioning techniques are widely used in the biological sciences, their applications are somewhat less popular but very useful in industrial applications. This presentation will review several specific applications where ultra-thin sectioning techniques have proven invaluable.The preparation of samples for sectioning usually involves embedding in an epoxy resin. Araldite 6005 Resin and Hardener are mixed so that the hardness of the embedding medium matches that of the sample to reduce any distortion of the sample during the sectioning process. No dehydration series are needed to prepare our usual samples for embedding, but some types require hardening and staining steps. The embedded samples are sectioned with either a prototype of a Porter-Blum Microtome or an LKB Ultrotome III. Both instruments are equipped with diamond knives.In the study of photographic film, the distribution of the developed silver particles through the layer is important to the image tone and/or scattering power. Also, the morphology of the developed silver is an important factor, and cross sections will show this structure.


Author(s):  
J.R. McIntosh ◽  
D.L. Stemple ◽  
William Bishop ◽  
G.W. Hannaway

EM specimens often contain 3-dimensional information that is lost during micrography on a single photographic film. Two images of one specimen at appropriate orientations give a stereo view, but complex structures composed of multiple objects of graded density that superimpose in each projection are often difficult to decipher in stereo. Several analytical methods for 3-D reconstruction from multiple images of a serially tilted specimen are available, but they are all time-consuming and computationally intense.


Author(s):  
J. S. Shah ◽  
R. Durkin ◽  
A. N. Farley

It is now possible to perform High Pressure Scanning Electron Microscopy (HPSEM) in the range 10 to 2000 Pa. Here the effect of scattering on resolution has been evaluated by calculating the profile of the beam in high pressure and assessing its effect on the image contrast . An experimental scheme is presented to show that the effect of the primary beam ionization is to reduce image contrast but this effect can be eliminated by a novel use of specimen current detection in the presence of an electric field. The mechanism of image enhancement is discussed in terms of collection of additional carriers generated by the emissive components.High Pressure SEM (HPSEM) instrumentation is establishing itself as commercially viable. There are now a number of manufacturers, such as JEOL, ABT, ESCAN, DEBEN RESEARCH, selling microscopes and accessories for HPSEM. This is because high pressure techniques have begun to yield high quality micrographs at medium resolution.To study the effect of scattering on the incident electron beam, its profile - in a high pressure environment - was evaluated by calculating the elastic and inelastic scattering cross sections for nitrogen in the energy range 5-25 keV. To assess the effect of the scattered beam on the image contrast, the modification of a sharp step contrast function due to scattering was calculated by single scattering approximation and experimentally confirmed for a 20kV accelerated beam.


Sign in / Sign up

Export Citation Format

Share Document