Application of S-transform profilometry in train wheel surface three dimensional measurement

2015 ◽  
Author(s):  
Haiqing Wang ◽  
Yu Zhang ◽  
Jinlong Li ◽  
Jiayuan Hu
2012 ◽  
Vol 565 ◽  
pp. 177-182 ◽  
Author(s):  
Akihiro Sakaguchi ◽  
Tomoyuki Kawashita ◽  
Shuji Matsuo

It is very important to measure a grinding wheel surface topography. Therefore a three dimensional measurement system of grinding wheel surface with image processing has been proposed. This system can evaluate a variety of the wheel surface topographies. For example, a histogram of the area or the shape of cutting edges and the distribution map of every shape of cutting edges were obtained. In this paper, a three dimensional model of the cutting edges and a correlation between the state of the wheel surface and grinding mark on the workpiece are reported and the effectiveness is evaluated through an experiment.


2011 ◽  
Vol 325 ◽  
pp. 294-299 ◽  
Author(s):  
Akihiro Sakaguchi ◽  
Tomoyuki Kawashita ◽  
Shuji Matsuo

Grinding process is a very efficient machining technology because innumerable abrasive grains are fixed on the surface of grinding wheel. Especially, the distribution and shape of cutting edges which directly affect grinding process have a big influence on accuracy. Thus, it is very important to measure a wheel surface topography from a viewpoint of evaluating the wheel life and the performance and a relation between the one and the roughness. In this study, a three-dimensional measurement system of a grinding wheel surface with image processing is developed. In this system, the distribution and height of cutting edges are analyzed because only cutting edges can be selected from among all abrasive grains.


2017 ◽  
Author(s):  
Antonio M. Bird ◽  
◽  
Katherine A. Kelker ◽  
Elizabeth S. Brogden ◽  
Jeff Glazner ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chanho Moon ◽  
Kotaro Yamasaki ◽  
Yoshihiko Nagashima ◽  
Shigeru Inagaki ◽  
Takeshi Ido ◽  
...  

AbstractA tomography system is installed as one of the diagnostics of new age to examine the three-dimensional characteristics of structure and dynamics including fluctuations of a linear magnetized helicon plasma. The system is composed of three sets of tomography components located at different axial positions. Each tomography component can measure the two-dimensional emission profile over the entire cross-section of plasma at different axial positions in a sufficient temporal scale to detect the fluctuations. The four-dimensional measurement including time and space successfully obtains the following three results that have never been found without three-dimensional measurement: (1) in the production phase, the plasma front propagates from the antenna toward the end plate with an ion acoustic velocity. (2) In the steady state, the plasma emission profile is inhomogeneous, and decreases along the axial direction in the presence of the azimuthal asymmetry. Furthermore, (3) in the steady state, the fluctuations should originate from a particular axial position located downward from the helicon antenna.


Sign in / Sign up

Export Citation Format

Share Document