Heating drug delivery to vascular wall with Rhodamine B and fluorescence labeled Paclitaxel ranging 50 to 70°C: ex vivo study

2016 ◽  
Author(s):  
R. Homma ◽  
M. Shinozuka ◽  
N. Shimazaki ◽  
T. Arai
2016 ◽  
Author(s):  
Kao Suganuma ◽  
Rie Homma ◽  
Natsumi Shimazaki ◽  
Emiyu Ogawa ◽  
Tsunenori Arai

Author(s):  
Nitin Dwivedi ◽  
Balak Das Kurmi ◽  
Prashant Kesharwani ◽  
Jigna Shah

Objective: In the domain of nano drug delivery, dendrimers are the most explored bioactive polymeric carrier system. The present work was aimed to study the diffusion potential of different generations of Poly (propyleneimine) (PPI) dendrimers on goat nasal mucosa in an ex vivo study and synthesize a stable dendrimer for olfactory drug delivery.Methods: The generations (3.0G, 4.0G, and 5.0G) of PPI dendrimer were synthesized, and PEGylated by MPEG 5000 and then loaded with donepezil. A comparative study was carried out among all generations in term of their drug loading capacity, stability, sustained release behaviour as well as for targeting efficacy. An ex-vivo study was carried out on Franz Diffusion Cell with goat nasal mucosa.Results: The developed G3, G4, and G5 dendrimerformulations had entrapment efficiency of 24.33±0.56%, 40.12±0.62%, and 60.4±0.6%, respectively. The nasal diffusion study revealed that 5.0G PPI dendrimer increased diffusion of donepezil up to 47% as compared to the pure solution of donepezil while 10% improvement in diffusion was seen as compared to 4.0 G PPI dendrimer. Thus obtained results claimed that the drug loading as well as targeting potential of PPI dendrimers increased with the increase in the number of generation. The investigation outcome indicated promising results of 5.0G PPI dendrimer over the 3.0G and 4.0G PPI dendrimer generations for their drug loading capacity, stability, and sustained release action.Conclusion: The 5.0G PPI dendrimer proved its superior candidature over the other lower generations of PPI dendrimers for drug delivery and drug targeting.


2020 ◽  
Author(s):  
Rafael Heiss ◽  
Frank W. Roemer ◽  
Christoph Lutter ◽  
Rolf Janka ◽  
Volker Schöffl ◽  
...  

2014 ◽  
Author(s):  
Klaus Engelke ◽  
Nicolas Bouler ◽  
Oleg Museyko Fuerst ◽  
Sebastien Parratte ◽  
Thomas Fuerst ◽  
...  

2020 ◽  
Vol 26 (6) ◽  
pp. 667-670
Author(s):  
Thomas Larrew ◽  
Mohammed Alshareef ◽  
Robert F. Murphy ◽  
Ramin Eskandari ◽  
Libby Kosnik Infinger

OBJECTIVEAlthough the advent of magnetic growing rod technology for scoliosis has provided a means to bypass multiple hardware lengthening operations, it is important to be aware that many of these same patients have a codiagnosis of hydrocephalus with magnet-sensitive programmable ventricular shunts. As the magnetic distraction of scoliosis rods has not previously been described to affect the shunt valve setting, the authors conducted an investigation to characterize the interaction between the two devices.METHODSIn this ex vivo study, the authors carried out 360 encounters between four different shunt valve types at varying distances from the magnetic external remote control (ERC) used to distract the growing rods. Valve settings were examined before and after every interaction with the remote control to determine if there was a change in the setting.RESULTSThe Medtronic Strata and Codman Hakim valves were found to have setting changes at distances of 3 and 6 inches but not at 12 inches. The Aesculap proGAV and Codman Certas valves, typically described as MRI-resistant, did not have any setting changes due to the magnetic ERC regardless of distance.CONCLUSIONSAlthough it is not necessary to check a shunt valve after every magnetic distraction of scoliosis growing rods, if there is concern that the magnetic ERC may have been within 12 inches (30 cm) of a programmable ventricular shunt valve, the valve should be checked at the bedside with a programmer or with a skull radiograph along with postdistraction scoliosis radiographs.


2020 ◽  
Vol 27 (21) ◽  
pp. 3534-3554 ◽  
Author(s):  
Fan Jiang ◽  
Yunqi Zhu ◽  
Changyang Gong ◽  
Xin Wei

Atherosclerosis is the leading inducement of cardiovascular diseases, which ranks the first cause of global deaths. It is an arterial disease associated with dyslipidemia and changes in the composition of the vascular wall. Besides invasive surgical strategy, the current conservative clinical treatment for atherosclerosis falls into two categories, lipid regulating-based therapy and antiinflammatory therapy. However, the existing strategies based on conventional drug delivery systems have shown limited efficacy against disease development and plenty of side effects. Nanomedicine has great potential in the development of targeted therapy, controlled drug delivery and release, the design of novel specific drugs and diagnostic modalities, and biocompatible scaffolds with multifunctional characteristics, which has led to an evolution in the diagnosis and treatment of atherosclerosis. This paper will focus on the latest nanomedicine strategies for atherosclerosis diagnosis and treatment as well as discussing the potential therapeutic targets during atherosclerosis progress, which could form the basis of development of novel nanoplatform against atherosclerosis.


2016 ◽  
Vol 16 (12) ◽  
pp. 1615-1621 ◽  
Author(s):  
Erik Andrade-Jorge ◽  
Marycarmen Godínez-Victoria ◽  
Luvia Enid Sánchez-Torres ◽  
Luis Humberto Fabila-Castillo ◽  
José G. Trujillo-Ferrara

Sign in / Sign up

Export Citation Format

Share Document