Investigation of tropical cirrus cloud properties using ground based lidar measurements

2016 ◽  
Author(s):  
Reji K. Dhaman ◽  
Malladi Satyanarayana ◽  
V. Krishnakumar ◽  
V. P. Mahadevan Pillai ◽  
G. S. Jayeshlal ◽  
...  
2014 ◽  
Vol 14 (16) ◽  
pp. 8389-8401 ◽  
Author(s):  
J. C. Chiu ◽  
J. A. Holmes ◽  
R. J. Hogan ◽  
E. J. O'Connor

Abstract. We have extensively analysed the interdependence between cloud optical depth, droplet effective radius, liquid water path (LWP) and geometric thickness for stratiform warm clouds using ground-based observations. In particular, this analysis uses cloud optical depths retrieved from untapped solar background signals that are previously unwanted and need to be removed in most lidar applications. Combining these new optical depth retrievals with radar and microwave observations at the Atmospheric Radiation Measurement (ARM) Climate Research Facility in Oklahoma during 2005–2007, we have found that LWP and geometric thickness increase and follow a power-law relationship with cloud optical depth regardless of the presence of drizzle; LWP and geometric thickness in drizzling clouds can be generally 20–40% and at least 10% higher than those in non-drizzling clouds, respectively. In contrast, droplet effective radius shows a negative correlation with optical depth in drizzling clouds and a positive correlation in non-drizzling clouds, where, for large optical depths, it asymptotes to 10 μm. This asymptotic behaviour in non-drizzling clouds is found in both the droplet effective radius and optical depth, making it possible to use simple thresholds of optical depth, droplet size, or a combination of these two variables for drizzle delineation. This paper demonstrates a new way to enhance ground-based cloud observations and drizzle delineations using existing lidar networks.


2014 ◽  
Vol 14 (7) ◽  
pp. 8963-8996
Author(s):  
J. C. Chiu ◽  
J. A. Holmes ◽  
R. J. Hogan ◽  
E. J. O'Connor

Abstract. We have extensively analysed the interdependence between cloud optical depth, droplet effective radius, liquid water path (LWP) and geometric thickness for stratiform warm clouds using ground-based observations. In particular, this analysis uses cloud optical depths retrieved from untapped solar background signal that is previously unwanted and needs to be removed in most lidar applications. Combining these new optical depth retrievals with radar and microwave observations at the Atmospheric Radiation Measurement (ARM) Climate Research Facility in Oklahoma during 2005–2007, we have found that LWP and geometric thickness increase and follow a power-law relationship with cloud optical depth regardless of the presence of drizzle; LWP and geometric thickness in drizzling clouds can be generally 20–40% and at least 10% higher than those in non-drizzling clouds, respectively. In contrast, droplet effective radius shows a negative correlation with optical depth in drizzling clouds, while it increases with optical depth and reaches an asymptote of 10 μm in non-drizzling clouds. This asymptotic behaviour in non-drizzling clouds is found in both droplet effective radius and optical depth, making it possible to use simple thresholds of optical depth, droplet size, or a combination of these two variables for drizzle delineation. This paper demonstrates a new way to enhance ground-based cloud observations and drizzle delineations using existing lidar networks.


2013 ◽  
Vol 13 (14) ◽  
pp. 6951-6963 ◽  
Author(s):  
C. Hoareau ◽  
P. Keckhut ◽  
V. Noel ◽  
H. Chepfer ◽  
J.-L. Baray

Abstract. This study provides an analysis of cirrus cloud properties at midlatitude in the southern part of France from ground-based and spaceborne lidars. A climatology of cirrus cloud properties and their evolution over more than 12 yr is presented and compared to other mid-latitude climatological studies. Cirrus clouds occur ~37% of the total observation time and remain quasi-constant across seasons with a variation within ~5% around the mean occurrence. Similar results are obtained from CALIOP and the ground-based lidar, with a mean difference in occurrence of ~5% between both instruments. From the ground-based lidar data, a slight decrease in occurrence of ~3% per decade is observed but found statistically insignificant. Based on a clustering analysis of cirrus cloud parameters, three distinct classes have been identified and investigations concerning their origin are discussed. Properties of these different classes are analysed, showing that thin cirrus in the upper troposphere represent ~50% of cloud cover detected in summer and fall, decreasing by 15–20% for other seasons.


2000 ◽  
Vol 39 (2) ◽  
pp. 154-168 ◽  
Author(s):  
Hélène Chepfer ◽  
Philippe Goloub ◽  
James Spinhirne ◽  
Pierre H. Flamant ◽  
Mario Lavorato ◽  
...  

2012 ◽  
Vol 117 (D9) ◽  
pp. n/a-n/a ◽  
Author(s):  
Dennis L. Hlavka ◽  
John E. Yorks ◽  
Stuart A. Young ◽  
Mark A. Vaughan ◽  
Ralph E. Kuehn ◽  
...  

2021 ◽  
Author(s):  
Qiang Li ◽  
Silke Groß

Abstract. By inducing linear contrails and contrail cirrus, air traffic has a main impact on the ice cloud coverage and occurrence. During the COVID-19 pandemic the civil air traffic over Europe was significantly reduced: in March and April 2020 to about 80 % compared to the year before. This unique situation allows to study the effect of air traffic on cirrus clouds. This work investigates based on satellite lidar measurements if and how cirrus cloud properties and occurrence changed over Europe in the course of COVID-19. Cirrus cloud properties are analyzed for different years, which showed similar meteorological conditions for March and April as they were found for 2020. Comparing these years shows that the cirrus cloud occurrence was reduced by about 30 % with smaller cloud thicknesses found in April 2020. The average thickness of cirrus clouds was reduced to 1.18 km in April 2020 compared to a value of 1.40 km under normal conditions. In addition, the cirrus clouds measured in April 2020 possess smaller mean values of the particle linear depolarization ratio (PLDR) than the previous years at high significance level, especially at colder temperatures (T 


2011 ◽  
Vol 116 (D19) ◽  
Author(s):  
John E. Yorks ◽  
Dennis L. Hlavka ◽  
Mark A. Vaughan ◽  
Matthew J. McGill ◽  
William D. Hart ◽  
...  

2014 ◽  
Vol 119 (6) ◽  
pp. 3295-3308 ◽  
Author(s):  
Tetsu Sakai ◽  
Narihiro Orikasa ◽  
Tomohiro Nagai ◽  
Masataka Murakami ◽  
Takuya Tajiri ◽  
...  

2018 ◽  
Vol 11 (9) ◽  
pp. 5075-5085 ◽  
Author(s):  
Boming Liu ◽  
Yingying Ma ◽  
Jiqiao Liu ◽  
Wei Gong ◽  
Wei Wang ◽  
...  

Abstract. The atmospheric boundary layer is an important atmospheric feature that affects environmental health and weather forecasting. In this study, we proposed a graphics algorithm for the derivation of atmospheric boundary layer height (BLH) from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data. Owing to the differences in scattering intensity between molecular and aerosol particles, the total attenuated backscatter coefficient 532 and attenuated backscatter coefficient 1064 were used simultaneously for BLH detection. The proposed algorithm transformed the gradient solution into graphics distribution solution to overcome the effects of large noise and improve the horizontal resolution. This method was then tested with real signals under different horizontal smoothing numbers (1, 3, 15 and 30). Finally, the results of BLH obtained by CALIPSO data were compared with the results retrieved by the ground-based lidar measurements. Under the horizontal smoothing number of 15, 12 and 9, the correlation coefficients between the BLH derived by the proposed algorithm and ground-based lidar were both 0.72. Under the horizontal smoothing number of 6, 3 and 1, the correlation coefficients between the BLH derived by graphics distribution method (GDM) algorithm and ground-based lidar were 0.47, 0.14 and 0.12, respectively. When the horizontal smoothing number was large (15, 12 and 9), the CALIPSO BLH derived by the proposed method demonstrated a good correlation with ground-based lidar. The algorithm provided a reliable result when the horizontal smoothing number was greater than 9. This finding indicated that the proposed algorithm can be applied to the CALIPSO satellite data with 3 and 5 km horizontal resolution.


Sign in / Sign up

Export Citation Format

Share Document