scholarly journals Advances in in situ inspection of automated fiber placement systems

Author(s):  
Peter D. Juarez ◽  
K. Elliott Cramer ◽  
Jeffrey P. Seebo
Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1951
Author(s):  
Yi Di Boon ◽  
Sunil Chandrakant Joshi ◽  
Somen Kumar Bhudolia

Fiber reinforced thermoplastic composites are gaining popularity in many industries due to their short consolidation cycles, among other advantages over thermoset-based composites. Computer aided manufacturing processes, such as filament winding and automated fiber placement, have been used conventionally for thermoset-based composites. The automated processes can be adapted to include in situ consolidation for the fabrication of thermoplastic-based composites. In this paper, a detailed literature review on the factors affecting the in situ consolidation process is presented. The models used to study the various aspects of the in situ consolidation process are discussed. The processing parameters that gave good consolidation results in past studies are compiled and highlighted. The parameters can be used as reference points for future studies to further improve the automated manufacturing processes.


2018 ◽  
Vol 188 ◽  
pp. 01024
Author(s):  
Vincenzo Iannone ◽  
Marco Barile ◽  
Leonardo Lecce

This work deals with the fabrication of an innovative hybrid thermoplastic prepreg by continuous hot forming process. The material, suitable also for Automated Fiber Placement process, is produced through a consolidation of commercial PEEK-Carbon Fiber prepreg sandwiched between two amorphous PEI films. Consolidation is performed by a purpose-designed automated prototype equipment operating on defined pressure and thermal cycles. Then preliminary tests on first trials produced were carried out. These activities have been developed in the frame of the NHYTE project, a Research and Innovation Action funded by the European Union's H2020 framework programme, under Grant Agreement No 723309 NOVOTECH acting as Coordinator presents this paper on behalf of all Partners of the project. The proof of NHYTE project concept is the manufacturing of a fastener free and high performing fuselage portion demonstrator.


Procedia CIRP ◽  
2019 ◽  
Vol 85 ◽  
pp. 189-194
Author(s):  
Ralf Engelhardt ◽  
Stefan Ehard ◽  
Tobias Wolf ◽  
Jonathan Oelhafen ◽  
Andreas Kollmannsberger ◽  
...  

Author(s):  
Elizabeth Gregory ◽  
Peter Juarez

This paper presents data from an innovative nondestructive evaluation (NDE) method for automated composite fiber placement fabrication. Using Infrared images of the fiber, as it was being placed, we are able to provide valuable information about the quality of the part during fabrication. Herein, we discuss the methodology for data collection and processing. The described in situ thermal NDE process is found to be applicable for identifying fiber tow overlaps, gaps, twists, puckering, and poor ply adhesion prior to cure, thereby reducing the time and cost associated with post cure flaw repair or scrapping parts. This paper also describes the process of assembling data sets for an entire part beyond simple frame by frame analysis. Example data sets for both a flat part and a larger cylindrical part are presented to demonstrate the type of defect characterization information that can be obtained.


Sign in / Sign up

Export Citation Format

Share Document