scholarly journals Effect of in situ treatment on the quality of flat thermoplastic composite plates made by automated fiber placement (AFP)

2018 ◽  
Vol 4 (2) ◽  
pp. 41-47 ◽  
Author(s):  
F. Shadmehri ◽  
S. V. Hoa ◽  
J. Fortin-Simpson ◽  
H. Ghayoor
Author(s):  
Elizabeth Gregory ◽  
Peter Juarez

This paper presents data from an innovative nondestructive evaluation (NDE) method for automated composite fiber placement fabrication. Using Infrared images of the fiber, as it was being placed, we are able to provide valuable information about the quality of the part during fabrication. Herein, we discuss the methodology for data collection and processing. The described in situ thermal NDE process is found to be applicable for identifying fiber tow overlaps, gaps, twists, puckering, and poor ply adhesion prior to cure, thereby reducing the time and cost associated with post cure flaw repair or scrapping parts. This paper also describes the process of assembling data sets for an entire part beyond simple frame by frame analysis. Example data sets for both a flat part and a larger cylindrical part are presented to demonstrate the type of defect characterization information that can be obtained.


2015 ◽  
Vol 22 (2) ◽  
pp. 175-186
Author(s):  
Farjad Shadmehri ◽  
Xiao Cai ◽  
Mehdi Hojjati ◽  
Jihua Chen ◽  
Suong V. Hoa

AbstractIn order to investigate the effect of autoclave process on the stiffness properties of thermoplastic composite truncated cones made by automated fiber placement technique (AFP), two short truncated cones were made out of advanced thermoplastic composite material (carbon fiber/PEEK). Then, the truncated cones were tested by impulse excitation of vibration to get experimental natural frequencies. Tensile and compression test coupons were made out of the same material using hand layup and autoclave process, and stiffness properties were characterized experimentally. Furthermore, finite element analysis was performed to extract theoretical natural frequencies using material properties obtained from coupon testing. Comparison between the natural frequencies obtained using the finite element method and experimental modal analysis was conducted. Furthermore, the two truncated cones were treated inside the autoclave, and changes in the thickness and density were measured. After autoclave treatment, experimental modal analysis was repeated to investigate the possible changes in natural frequencies. The finite element model was also updated upon the changes in thickness and density of the truncated cones, and consequently, comparison between the theoretical and experimental natural frequencies was carried out again. Also, micrographs of two truncated cones were taken before and after autoclave treatment to examine the autoclave effect on the quality of the samples.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1951
Author(s):  
Yi Di Boon ◽  
Sunil Chandrakant Joshi ◽  
Somen Kumar Bhudolia

Fiber reinforced thermoplastic composites are gaining popularity in many industries due to their short consolidation cycles, among other advantages over thermoset-based composites. Computer aided manufacturing processes, such as filament winding and automated fiber placement, have been used conventionally for thermoset-based composites. The automated processes can be adapted to include in situ consolidation for the fabrication of thermoplastic-based composites. In this paper, a detailed literature review on the factors affecting the in situ consolidation process is presented. The models used to study the various aspects of the in situ consolidation process are discussed. The processing parameters that gave good consolidation results in past studies are compiled and highlighted. The parameters can be used as reference points for future studies to further improve the automated manufacturing processes.


2018 ◽  
Vol 188 ◽  
pp. 01024
Author(s):  
Vincenzo Iannone ◽  
Marco Barile ◽  
Leonardo Lecce

This work deals with the fabrication of an innovative hybrid thermoplastic prepreg by continuous hot forming process. The material, suitable also for Automated Fiber Placement process, is produced through a consolidation of commercial PEEK-Carbon Fiber prepreg sandwiched between two amorphous PEI films. Consolidation is performed by a purpose-designed automated prototype equipment operating on defined pressure and thermal cycles. Then preliminary tests on first trials produced were carried out. These activities have been developed in the frame of the NHYTE project, a Research and Innovation Action funded by the European Union's H2020 framework programme, under Grant Agreement No 723309 NOVOTECH acting as Coordinator presents this paper on behalf of all Partners of the project. The proof of NHYTE project concept is the manufacturing of a fastener free and high performing fuselage portion demonstrator.


Procedia CIRP ◽  
2019 ◽  
Vol 85 ◽  
pp. 189-194
Author(s):  
Ralf Engelhardt ◽  
Stefan Ehard ◽  
Tobias Wolf ◽  
Jonathan Oelhafen ◽  
Andreas Kollmannsberger ◽  
...  

2020 ◽  
Vol 110 (7-8) ◽  
pp. 2105-2117
Author(s):  
Omar Baho ◽  
Gilles Ausias ◽  
Yves Grohens ◽  
Julien Férec

Abstract Laser-assisted automated fiber placement (AFP) is highly suitable for an efficient production of thermoplastic-matrix composite parts, especially for aeronautic/aerospace applications. Heat input by laser heating provides many advantages such as better temperature controls and uniform heating projections. However, this laser beam distribution can be affected by the AFP head system, mainly at the roller level. In this paper, a new optico-thermal model is established to evaluate the laser energy quantity absorbed by a poly(ether ether ketone) reinforced with carbon fibers (APC-2). During the simulation process, the illuminated radiative material properties are characterized and evaluated in terms of the roller deformation, the tilt of the robot head, and the reflection phenomenon between the substrate and the incoming tape. After computing the radiative source term using a ray-tracing method, these data are used to predict the temperature distribution on both heated surfaces of the composite during the process. The results show that both the roller deformation and the tilt of head make it possible to focus the laser beam on a small area, which considerably affects the quality of the finished part. These findings demonstrate that this optico-thermal model can be used to predict numerically the insufficient heating area and thermoplastic composites heating law.


2015 ◽  
Vol 22 (2) ◽  
pp. 165-173 ◽  
Author(s):  
Jihua Chen ◽  
Teresa Chen-Keat ◽  
Mehdi Hojjati ◽  
AJ Vallee ◽  
Marc-Andre Octeau ◽  
...  

AbstractDeveloping reliable processes is one of the key elements in producing high-quality composite components using an automated fiber placement (AFP) process. In this study, both simulation and experimental studies were carried out to investigate fiber steering and cut/restart under different processing parameters, such as layup rate and compaction pressure, during the AFP process. First, fiber paths were designed using curved fiber axes with different radii. Fiber placement trials were then conducted to investigate the quality of the steered fiber paths. Furthermore, a series of sinusoidal fiber paths were fiber placed and investigated. Moreover, a six-ply laminate with cut-outs in it was manufactured in the cut/restart trials. The accuracy of the fiber cut/restart was compared at different layup rates for both one- and bi-directional layups. Experimental results show that it was possible to layup steered fiber paths with small radii of curvature (minimum 114 mm) designed for this study when the proper process condition was used. It was observed from the cut/restart trials that the quality of tow cut was independent of layup speed; however, the accuracy of tow restart was related to the layup speed. The faster the layup speed, the less accurate was the tow restart.


2021 ◽  
Author(s):  
MEHRSHAD MOGHADAMAZAD ◽  
SUONG V. HOA

The heat transfer analysis of thermoplastic composite manufactured using automated fiber placement with a hot gas torch can be done using numerical methods such as finite difference method. The accuracy of the theoretical results depends upon the accuracy of the thermal inputs. The hot gas/air temperature and convection coefficient distributions between the hot gas and the surface of the substrate (thermal inputs) have the significant influence on the accuracy of the resulting theoretical temperature distributions in the deposited laminate. A model predicting theoretical results which agree with experimental measurements is presented


Sign in / Sign up

Export Citation Format

Share Document