Micro-scale thermal imaging of CO2absorption in the thermochemical energy storage of Li metal oxides at high temperature

Author(s):  
Junko Morikawa ◽  
Hiroki Takasu ◽  
Massimiliano Zamengo ◽  
Yukitaka Kato
2018 ◽  
Vol 168 ◽  
pp. 421-453 ◽  
Author(s):  
Sike Wu ◽  
Cheng Zhou ◽  
Elham Doroodchi ◽  
Rajesh Nellore ◽  
Behdad Moghtaderi

Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1232 ◽  
Author(s):  
Nicole Carina Preisner ◽  
Marc Linder

High-temperature thermal energy storage enables concentrated solar power plants to provide base load. Thermochemical energy storage is based on reversible gas–solid reactions and brings along the advantage of potential loss-free energy storage in the form of separated reaction products and possible high energy densities. The redox reaction of metal oxides is able to store thermal energy at elevated temperatures with air providing the gaseous reaction partner. However, due to the high temperature level, it is crucial to extract both the inherent sensible and thermochemical energies of the metal-oxide particles for enhanced system efficiency. So far, experimental research in the field of thermochemical energy storage focused mainly on solar receivers for continuously charging metal oxides. A continuously operated system of energy storage and solar tower decouples the storage capacity from generated power with metal-oxide particles applied as heat transfer medium and energy storage material. Hence, a heat exchanger based on a countercurrent moving bed concept was developed in a kW -scale. The reactor addresses the combined utilization of the reaction enthalpy of the oxidation and the extraction of thermal energy of a manganese–iron-oxide particle flow. A stationary temperature profile of the bulk was achieved with two distinct temperature sections. The oxidation induced a nearly isothermal section with an overall stable off-gas temperature. The oxidation and heat extraction from the manganese–iron oxide resulted in a total energy density of 569 kJ/kg with a thermochemical share of 21.1%.


2021 ◽  
Author(s):  
Arghya Patra ◽  
Jerome Davis III ◽  
Saran Pidaparthy ◽  
Manohar H. Karigerasi ◽  
Beniamin Zahiri ◽  
...  

<p>Layered sodium transition metal oxides constitute an important class of materials with applications including electrochemical energy storage, high temperature superconductivity and electrocatalysis. However, electrodeposition of these compounds, an approach commonly used to grow other oxides, has been elusive due to their atmosphere instability and intrinsic incompatibility with aqueous electrolytes. Through use of a dry molten sodium hydroxide electrolyte, we demonstrate the high throughput electrodeposition of O3 (O’3) and P2 type layered sodium transition metal oxides across multiple transition metal chemistries, and apply these electrodeposits as high areal capacity cathodes in sodium-ion batteries. The electrodeposits are microns thick, polycrystalline, and structurally similar to materials synthesized classically at high temperature. This work enables fabrication of a wide group of previously inaccessible alkali and alkaline earth ion intercalated, higher valent transition group oxides in important thick film form factors.</p>


Author(s):  
Nasser Vahedi ◽  
Alparslan Oztekin

Abstract Continuous power supply in Concentrated Solar Power (CSP) plants can be achieved via integration of efficient, cost-effective and reliable Thermal Energy Storage (TES) system. The new generation of CSPs operates at higher temperatures and requires thermal storage systems with higher energy density at high storage temperature. Thermochemical Energy Storage (TCES) is the available solution which can meet performance requirements of energy density, temperature, and stability. TCES systems apply reversible endothermic/exothermic chemical reaction through which energy is stored as the enthalpy of reaction and released during the reverse mode. Among several available potential reversible chemical reactions, metal oxides, with high reaction temperature and enthalpy of reaction, have remarkable advantages compared to others. They use air both as Heat Transfer Fluid (HTF) and oxidation reactant, which eliminates the need for storage and intermediate heat exchanger integration between HTF and collector working fluid. Using air as HTF has made them perfectly fitted for the new generation of air operated solar collectors. Among several screened available potential metal oxides, cobalt and manganese oxides were selected as best candidates for high-temperature storage. Pure manganese oxide does not meet the cyclic operation requirement, but the iron-doped solid solution has proven reasonable cyclic storage performance. In this study, iron-doped manganese oxide (Fe-Mn 1:3 molar ratio) has been selected as a redox agent for TCES reactor. The cylindrical packed bed configuration is considered as a reactor bed configuration. A two-dimensional axisymmetric numerical model is developed using the finite element method. Performance analysis for both charge and discharge is provided separately. The effect of inflow rate and bed porosity variations on reactor performance in complete storage cycle were studied.


2021 ◽  
Author(s):  
Arghya Patra ◽  
Jerome Davis III ◽  
Saran Pidaparthy ◽  
Manohar H. Karigerasi ◽  
Beniamin Zahiri ◽  
...  

<p>Layered sodium transition metal oxides constitute an important class of materials with applications including electrochemical energy storage, high temperature superconductivity and electrocatalysis. However, electrodeposition of these compounds, an approach commonly used to grow other oxides, has been elusive due to their atmosphere instability and intrinsic incompatibility with aqueous electrolytes. Through use of a dry molten sodium hydroxide electrolyte, we demonstrate the high throughput electrodeposition of O3 (O’3) and P2 type layered sodium transition metal oxides across multiple transition metal chemistries, and apply these electrodeposits as high areal capacity cathodes in sodium-ion batteries. The electrodeposits are microns thick, polycrystalline, and structurally similar to materials synthesized classically at high temperature. This work enables fabrication of a wide group of previously inaccessible alkali and alkaline earth ion intercalated, higher valent transition group oxides in important thick film form factors.</p>


Sign in / Sign up

Export Citation Format

Share Document