Spatio-temporal cerebral blood flow perfusion patterns in cortical spreading depression

2017 ◽  
Author(s):  
Andrey Yu. Verisokin ◽  
Darya V. Verveyko ◽  
Dmitry E. Postnov
2008 ◽  
Vol 28 (7) ◽  
pp. 1369-1376 ◽  
Author(s):  
Inna Sukhotinsky ◽  
Ergin Dilekoz ◽  
Michael A Moskowitz ◽  
Cenk Ayata

Cortical spreading depression (CSD) evokes a large cerebral blood flow (CBF) increase in normal rat brain. In contrast, in focal ischemic penumbra, CSD-like periinfarct depolarizations (PID) are mainly associated with hypoperfusion. Because PIDs electrophysiologically closely resemble CSD, we tested whether conditions present in ischemic penumbra, such as tissue hypoxia or reduced perfusion pressure, transform the CSD-induced CBF response in nonischemic rat cortex. Cerebral blood flow changes were recorded using laser Doppler flowmetry in rats subjected to hypoxia, hypotension, or both. Under normoxic normotensive conditions, CSD caused a characteristic transient CBF increase (74 ± 7%) occasionally preceded by a small hypoperfusion (−4 ± 2%). Both hypoxia ( pO2 45 ± 3 mm Hg) and hypotension (blood pressure 42 ± 2 mm Hg) independently augmented this initial hypoperfusion (−14 ± 2% normoxic hypotension; −16 ± 6% hypoxic normotension; −21 ± 5% hypoxic hypotension) and diminished the magnitude of hyperemia (44 ± 10% normoxic hypotension; 43 ± 9% hypoxic normotension; 27 ± 6% hypoxic hypotension). Hypotension and, to a much lesser extent, hypoxia increased the duration of hypoperfusion and the DC shift, whereas CSD amplitude remained unchanged. These results suggest that hypoxia and/or hypotension unmask a vasoconstrictive response during CSD in the rat such that, under nonphysiologic conditions (i.e., mimicking ischemic penumbra), the hyperemic response to CSD becomes attenuated resembling the blood flow response during PIDs.


1997 ◽  
Vol 37 (6) ◽  
pp. 441-446 ◽  
Author(s):  
Morikazu UEDA ◽  
Noriaki WATANABE ◽  
Yukio USHIKUBO ◽  
Takashi TSUZUKI ◽  
Kazuya AOKI ◽  
...  

Cephalalgia ◽  
1992 ◽  
Vol 12 (3) ◽  
pp. 137-141 ◽  
Author(s):  
Sima Mraovitch ◽  
Yolande Calando ◽  
Peter J Goadsby ◽  
Jacques Seylaz

Changes in cerebral cortical perfusion (CBFLDF), local cerebral blood flow (ICBF) and local cerebral glucose utilization (ICGU) elicited by unilateral cortical spreading depression (SD) were monitored and measured in separate groups of rats anesthetized with a-chloralose. CBFLDF was recorded with laser Doppler flowmetry, while ICBF and ICGU were measured by the quantitative autoradiographic [14C]iodoantipyrine and [14C]-2-deoxyglucose methods, respectively. SD elicited a wave of hyperemia after a latency of 2 to 3 min followed by an oligemic phase. Ninety minutes following the onset of SD cortical (frontal, parietal and occipital) ICBF and ICGU were essentially the same as on the contralateral side and in sham-treated rats. However, alteration in the ICBF and ICGU in upper and lower brainstem persisted. The present results demonstrate, for the first time, that long-lasting cerebrovascular and metabolic alterations take place within the subcortical regions following SD. These regions provide an attractive site to integrate observations in man concerning spreading depression and the aura of migraine with the other features of the syndrome.


2001 ◽  
Vol 21 (3) ◽  
pp. 195-201 ◽  
Author(s):  
Andrew K. Dunn ◽  
Hayrunnisa Bolay ◽  
Michael A. Moskowitz ◽  
David A. Boas

A method for dynamic, high-resolution cerebral blood flow (CBF) imaging is presented in this article. By illuminating the cortex with laser light and imaging the resulting speckle pattern, relative CBF images with tens of microns spatial and millisecond temporal resolution are obtained. The regional CBF changes measured with the speckle technique are validated through direct comparison with conventional laser-Doppler measurements. Using this method, dynamic images of the relative CBF changes during focal cerebral ischemia and cortical spreading depression were obtained along with electrophysiologic recordings. Upon middle cerebral artery (MCA) occlusion, the speckle technique yielded high-resolution images of the residual CBF gradient encompassing the ischemic core, penumbra, oligemic, and normally perfused tissues over a 6 × 4 mm cortical area. Successive speckle images demonstrated a further decrease in residual CBF indicating an expansion of the ischemic zone with finely delineated borders. Dynamic CBF images during cortical spreading depression revealed a 2 to 3 mm area of increased CBF (160% to 250%) that propagated with a velocity of 2 to 3 mm/min. This technique is easy to implement and can be used to monitor the spatial and temporal evolution of CBF changes with high resolution in studies of cerebral pathophysiology.


Sign in / Sign up

Export Citation Format

Share Document