Diffractive polarization illuminator for a two-axis fiber-optic angle sensor

2017 ◽  
Author(s):  
V. D. Paranin ◽  
S. N. Khonina
Keyword(s):  
Author(s):  
Nurul Ashikin Mohd Rais ◽  
Mohd Aldrin Ali ◽  
Hasnorhafiza Husni ◽  
Zulzilawati Jusoh

2008 ◽  
Vol 148 (1) ◽  
pp. 83-87 ◽  
Author(s):  
Tao Lű ◽  
Zhengjia Li ◽  
Qiujiao Du ◽  
Jie Bi

2014 ◽  
Vol 668-669 ◽  
pp. 990-993
Author(s):  
Ming Hui Zong ◽  
Deng Hua Li

In order to develop north seeking system with strong anti-interference ability, the influence caused by the swaying base on the performance of north seeker was investigated. The influence of sinusoidal signal of gyros and tilt sensor's output was analyzed based on four-position north seeking system which was consisted of a single axis gyro and a tilt sensor. Fiber optic gyros and tilt sensor are interference by the same vibration signal, according to the relationship between the output signal of gyro and the angle sensor, a PI controller was designed to compensate the gyro's output error. This real time compensation can effectively improve the north seeking accuracy and speed without complicated calculation or external reference signal. The north seeking accuracy is better than 0.03o. Simulation and actual north seeking result proved that this method significantly improves the north seeking performance in vibrant environment.


1988 ◽  
Vol 7 (2) ◽  
pp. 115-137 ◽  
Author(s):  
J. T. Newmaster ◽  
M. R. Brininstool ◽  
T. Hofler ◽  
S. L. Garrett

2015 ◽  
Vol 57 (11) ◽  
pp. 1309-1314 ◽  
Author(s):  
V. M. Grechishnikov ◽  
V. G. Domrachev ◽  
O. V. Teryaeva ◽  
A. A. Yudin

Author(s):  
J. M. Cowley ◽  
R. Glaisher ◽  
J. A. Lin ◽  
H.-J. Ou

Some of the most important applications of STEM depend on the variety of imaging and diffraction made possible by the versatility of the detector system and the serial nature, of the image acquisition. A special detector system, previously described, has been added to our STEM instrument to allow us to take full advantage of this versatility. In this, the diffraction pattern in the detector plane may be formed on either of two phosphor screens, one with P47 (very fast) phosphor and the other with P20 (high efficiency) phosphor. The light from the phosphor is conveyed through a fiber-optic rod to an image intensifier and TV system and may be photographed, recorded on videotape, or stored digitally on a frame store. The P47 screen has a hole through it to allow electrons to enter a Gatan EELS spectrometer. Recently a modified SEM detector has been added so that high resolution (10Å) imaging with secondary electrons may be used in conjunction with other modes.


2019 ◽  
Vol 107 (3) ◽  
pp. 305
Author(s):  
Mengmei Geng ◽  
Yuting Long ◽  
Tongqing Liu ◽  
Zijuan Du ◽  
Hong Li ◽  
...  

Surface-enhanced Raman Scattering (SERS) fiber probe provides abundant interaction area between light and materials, permits detection within limited space and is especially useful for remote or in situ detection. A silver decorated SERS fiber optic probe was prepared by hydrothermal method. This method manages to accomplish the growth of silver nanoparticles and its adherence on fiber optic tip within one step, simplifying the synthetic procedure. The effects of reaction time on phase composition, surface plasmon resonance property and morphology were investigated by X-ray diffraction analysis (XRD), ultraviolet-visible absorption spectrum (UV-VIS absorption spectrum) and scanning electron microscope (SEM). The results showed that when reaction time is prolonged from 4–8 hours at 180 °C, crystals size and size distribution of silver nanoparticles increase. Furthermore, the morphology, crystal size and distribution density of silver nanoparticles evolve along with reaction time. A growth mechanism based on two factors, equilibrium between nucleation and growth, and the existence of PVP, is hypothesized. The SERS fiber probe can detect rhodamin 6G (R6G) at the concentration of 10−6 M. This SERS fiber probe exhibits promising potential in organic dye and pesticide residue detection.


2020 ◽  
pp. 15-23
Author(s):  
V. M. Grechishnikov ◽  
E. G. Komarov

The design and operation principle of a multi-sensor Converter of binary mechanical signals into electrical signals based on a partitioned fiber-optic digital-to-analog Converter with a parallel structure is considered. The digital-to-analog Converter is made from a set of simple and technological (three to five digit) fiber-optic digital-to-analog sections. The advantages of the optical scheme of the proposed. Converter in terms of metrological and energy characteristics in comparison with single multi-bit converters are justified. It is shown that by increasing the number of digital-analog sections, it is possible to repeatedly increase the information capacity of a multi-sensor Converter without tightening the requirements for its manufacturing technology and element base. A mathematical model of the proposed Converter is developed that reflects the features of its operation in the mode of sequential time conversion of the input code vectors of individual fiber-optic sections into electrical analogues and the formation of the resulting output code vector.


Sign in / Sign up

Export Citation Format

Share Document