Performance characterization of the moderate resolution imaging spectroradiometer (MODIS) engineering model

1995 ◽  
Author(s):  
Thomas S. Pagano ◽  
James B. Young ◽  
Neil J. Therrien

2020 ◽  
Vol 13 (1) ◽  
pp. 111
Author(s):  
Michelle Loveless ◽  
E. Eva Borbas ◽  
Robert Knuteson ◽  
Kerry Cawse-Nicholson ◽  
Glynn Hulley ◽  
...  

The Combined ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) MODIS (Moderate Resolution Imaging Spectroradiometer) Emissivity over Land (CAMEL) Version 2 (V002) has been available since March 2019 from the NASA LP DAAC (Land Processes Distributed Active Archive Center) and provides global, monthly infrared land surface emissivity and uncertainty at 0.05 degrees (~5 km) resolution. A climatology of the CAMEL V002 product is now available at the same spatial, temporal, and spectral resolution, covering the CAMEL record from 2000 to 2016. Characterization of the climatology over case sites and IGBP (International Geosphere-Biosphere Programme) land cover categories shows the climatology is a stable representation of the monthly CAMEL emissivity. Time series of the monthly CAMEL V002 product show realistic seasonal changes but also reveal subtle artifacts known to be from calibration and processing errors in the MODIS MxD11 emissivity. The use of the CAMEL V002 climatology mitigates many of these time dependent errors by providing an emissivity estimate which represents the complete 16-year record. The CAMEL V002 climatology’s integration into RTTOV (Radiative Transfer for TOVS) v12 is demonstrated through the simulation of IASI (Infrared Atmospheric Sounding Interferometer) radiances. Improved stability in CAMEL Version 3 is expected in the future with the incorporation of the new MxD21 and VIIRS VNP21 emissivity products in MODIS Collection 6.1.



2011 ◽  
Vol 11 (2) ◽  
pp. 5351-5378 ◽  
Author(s):  
A. K. Mebust ◽  
A. R. Russell ◽  
R. C. Hudman ◽  
L. C. Valin ◽  
R. C. Cohen

Abstract. We use observations of fire radiative power (FRP) from the Moderate Resolution Imaging Spectroradiometer (MODIS) and tropospheric NO2 column measurements from the Ozone Monitoring Instrument (OMI) to derive NO2 wildfire emission coefficients (g MJ−1) for three land types over California and Nevada. Retrieved emission coefficients were 0.279 ± 0.077, 0.342 ± 0.053, and 0.696 ± 0.088 g MJ−1 NO2 for forest, grass and shrub fuels, respectively. These emission coefficients reproduce ratios of emissions with fuel type reported previously using independent methods. However, the magnitude of these coefficients is lower than prior estimates, which suggests either a negative bias in the OMI NO2 retrieval over regions of active emissions, or that the average fire observed in our study has a smaller ratio of flaming to smoldering combustion than measurements used in prior estimates of emissions. Our results indicate that satellite data can provide an extensive characterization of the variability in fire NOx emissions; 67% of the variability in emissions in this region can be accounted for using an FRP-based parameterization.



Author(s):  
Zhenzhen Wang ◽  
Jianjun Zhao ◽  
Jiawen Xu ◽  
Mingrui Jia ◽  
Han Li ◽  
...  

Northeast China is China’s primary grain production base. A large amount of crop straw is incinerated every spring and autumn, which greatly impacts air quality. To study the degree of influence of straw burning on urban pollutant concentrations, this study used The Moderate-Resolution Imaging Spectroradiometer/Terra Thermal Anomalies & Fire Daily L3 Global 1 km V006 (MOD14A1) and The Moderate-Resolution Imaging Spectroradiometer/Aqua Thermal Anomalies and Fire Daily L3 Global 1 km V006 (MYD14A1) data from 2015 to 2017 to extract fire spot data on arable land burning and to study the spatial distribution characteristics of straw burning on urban pollutant concentrations, temporal variation characteristics and impact thresholds. The results show that straw burning in Northeast China is concentrated in spring and autumn; the seasonal spatial distributions of PM2.5, PM10 andAir Quality Index (AQI) in 41 cities or regions in Northeast China correspond to the seasonal variation of fire spots; and pollutants appear in the peak periods of fire spots. In areas where the concentration coefficient of rice or corn is greater than 1, the number of fire spots has a strong correlation with the urban pollution index. The correlation coefficient R between the number of burned fire spots and the pollutant concentration has a certain relationship with the urban distribution. Cities are aggregated in geospatial space with different R values.



2021 ◽  
Vol 13 (15) ◽  
pp. 2895
Author(s):  
Maria Gavrouzou ◽  
Nikolaos Hatzianastassiou ◽  
Antonis Gkikas ◽  
Christos J. Lolis ◽  
Nikolaos Mihalopoulos

A satellite algorithm able to identify Dust Aerosols (DA) is applied for a climatological investigation of Dust Aerosol Episodes (DAEs) over the greater Mediterranean Basin (MB), one of the most climatologically sensitive regions of the globe. The algorithm first distinguishes DA among other aerosol types (such as Sea Salt and Biomass Burning) by applying threshold values on key aerosol optical properties describing their loading, size and absorptivity, namely Aerosol Optical Depth (AOD), Aerosol Index (AI) and Ångström Exponent (α). The algorithm operates on a daily and 1° × 1° geographical cell basis over the 15-year period 2005–2019. Daily gridded spectral AOD data are taken from Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua Collection 6.1, and are used to calculate the α data, which are then introduced into the algorithm, while AI data are obtained by the Ozone Monitoring Instrument (OMI) -Aura- Near-UV aerosol product OMAERUV dataset. The algorithm determines the occurrence of Dust Aerosol Episode Days (DAEDs), whenever high loads of DA (higher than their climatological mean value plus two/four standard deviations for strong/extreme DAEDs) exist over extended areas (more than 30 pixels or 300,000 km2). The identified DAEDs are finally grouped into Dust Aerosol Episode Cases (DAECs), consisting of at least one DAED. According to the algorithm results, 166 (116 strong and 50 extreme) DAEDs occurred over the MB during the study period. DAEDs are observed mostly in spring (47%) and summer (38%), with strong DAEDs occurring primarily in spring and summer and extreme ones in spring. Decreasing, but not statistically significant, trends of the frequency, spatial extent and intensity of DAECs are revealed. Moreover, a total number of 98 DAECs was found, primarily in spring (46 DAECs) and secondarily in summer (36 DAECs). The seasonal distribution of the frequency of DAECs varies geographically, being highest in early spring over the eastern Mediterranean, in late spring over the central Mediterranean and in summer over the western MB.



2021 ◽  
Vol 13 (5) ◽  
pp. 920
Author(s):  
Zhongting Wang ◽  
Ruru Deng ◽  
Pengfei Ma ◽  
Yuhuan Zhang ◽  
Yeheng Liang ◽  
...  

Aerosol distribution with fine spatial resolution is crucial for atmospheric environmental management. This paper proposes an improved algorithm of aerosol retrieval from 250-m Medium Resolution Spectral Image (MERSI) data of Chinese FY-3 satellites. A mixing model of soil and vegetation was used to calculate the parameters of the algorithm from moderate-resolution imaging spectroradiometer (MODIS) reflectance products in 500-m resolution. The mixing model was used to determine surface reflectance in blue band, and the 250-m aerosol optical depth (AOD) was retrieved through removing surface contributions from MERSI data over Guangzhou. The algorithm was used to monitor two pollution episodes in Guangzhou in 2015, and the results displayed an AOD spatial distribution with 250-m resolution. Compared with the yearly average of MODIS aerosol products in 2015, the 250-m resolution AOD derived from the MERSI data exhibited great potential for identifying air pollution sources. Daily AODs derived from MERSI data were compared with ground results from CE318 measurements. The results revealed a correlation coefficient between the AODs from MERSI and those from the ground measurements of approximately 0.85, and approximately 68% results were within expected error range of ±(0.05 + 15%τ).



2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hirofumi Hashimoto ◽  
Weile Wang ◽  
Jennifer L. Dungan ◽  
Shuang Li ◽  
Andrew R. Michaelis ◽  
...  

AbstractAssessing the seasonal patterns of the Amazon rainforests has been difficult because of the paucity of ground observations and persistent cloud cover over these forests obscuring optical remote sensing observations. Here, we use data from a new generation of geostationary satellites that carry the Advanced Baseline Imager (ABI) to study the Amazon canopy. ABI is similar to the widely used polar orbiting sensor, the Moderate Resolution Imaging Spectroradiometer (MODIS), but provides observations every 10–15 min. Our analysis of NDVI data collected over the Amazon during 2018–19 shows that ABI provides 21–35 times more cloud-free observations in a month than MODIS. The analyses show statistically significant changes in seasonality over 85% of Amazon forest pixels, an area about three times greater than previously reported using MODIS data. Though additional work is needed in converting the observed changes in seasonality into meaningful changes in canopy dynamics, our results highlight the potential of the new generation geostationary satellites to help us better understand tropical ecosystems, which has been a challenge with only polar orbiting satellites.



Sign in / Sign up

Export Citation Format

Share Document