Simple extension of babinets principle to weak phase objects

Author(s):  
Michael Totzeck
Keyword(s):  
Methodology ◽  
2015 ◽  
Vol 11 (3) ◽  
pp. 110-115 ◽  
Author(s):  
Rand R. Wilcox ◽  
Jinxia Ma

Abstract. The paper compares methods that allow both within group and between group heteroscedasticity when performing all pairwise comparisons of the least squares lines associated with J independent groups. The methods are based on simple extension of results derived by Johansen (1980) and Welch (1938) in conjunction with the HC3 and HC4 estimators. The probability of one or more Type I errors is controlled using the improvement on the Bonferroni method derived by Hochberg (1988) . Results are illustrated using data from the Well Elderly 2 study, which motivated this paper.


1997 ◽  
Vol 36 (8-9) ◽  
pp. 331-336 ◽  
Author(s):  
Gabriela Weinreich ◽  
Wolfgang Schilling ◽  
Ane Birkely ◽  
Tallak Moland

This paper presents results from an application of a newly developed simulation tool for pollution based real time control (PBRTC) of urban drainage systems. The Oslo interceptor tunnel is used as a case study. The paper focuses on the reduction of total phosphorus Ptot and ammonia-nitrogen NH4-N overflow loads into the receiving waters by means of optimized operation of the tunnel system. With PBRTC the total reduction of the Ptot load is 48% and of the NH4-N load 51%. Compared to the volume based RTC scenario the reductions are 11% and 15%, respectively. These further reductions could be achieved with a relatively simple extension of the operation strategy.


Author(s):  
Manfred Staat

AbstractExtension fractures are typical for the deformation under low or no confining pressure. They can be explained by a phenomenological extension strain failure criterion. In the past, a simple empirical criterion for fracture initiation in brittle rock has been developed. In this article, it is shown that the simple extension strain criterion makes unrealistic strength predictions in biaxial compression and tension. To overcome this major limitation, a new extension strain criterion is proposed by adding a weighted principal shear component to the simple criterion. The shear weight is chosen, such that the enriched extension strain criterion represents the same failure surface as the Mohr–Coulomb (MC) criterion. Thus, the MC criterion has been derived as an extension strain criterion predicting extension failure modes, which are unexpected in the classical understanding of the failure of cohesive-frictional materials. In progressive damage of rock, the most likely fracture direction is orthogonal to the maximum extension strain leading to dilatancy. The enriched extension strain criterion is proposed as a threshold surface for crack initiation CI and crack damage CD and as a failure surface at peak stress CP. Different from compressive loading, tensile loading requires only a limited number of critical cracks to cause failure. Therefore, for tensile stresses, the failure criteria must be modified somehow, possibly by a cut-off corresponding to the CI stress. Examples show that the enriched extension strain criterion predicts much lower volumes of damaged rock mass compared to the simple extension strain criterion.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Miguel Escudero ◽  
Jacobo Lopez-Pavon ◽  
Nuria Rius ◽  
Stefan Sandner

Abstract At present, cosmological observations set the most stringent bound on the neutrino mass scale. Within the standard cosmological model (ΛCDM), the Planck collaboration reports ∑mv< 0.12 eV at 95 % CL. This bound, taken at face value, excludes many neutrino mass models. However, unstable neutrinos, with lifetimes shorter than the age of the universe τν ≲ tU, represent a particle physics avenue to relax this constraint. Motivated by this fact, we present a taxonomy of neutrino decay modes, categorizing them in terms of particle content and final decay products. Taking into account the relevant phenomenological bounds, our analysis shows that 2-body decaying neutrinos into BSM particles are a promising option to relax cosmological neutrino mass bounds. We then build a simple extension of the type I seesaw scenario by adding one sterile state ν4 and a Goldstone boson ϕ, in which νi→ ν4ϕ decays can loosen the neutrino mass bounds up to ∑mv ∼ 1 eV, without spoiling the light neutrino mass generation mechanism. Remarkably, this is possible for a large range of the right-handed neutrino masses, from the electroweak up to the GUT scale. We successfully implement this idea in the context of minimal neutrino mass models based on a U(1)μ−τ flavor symmetry, which are otherwise in tension with the current bound on ∑mv.


1997 ◽  
Vol 3 (S2) ◽  
pp. 1081-1082
Author(s):  
I. Angert ◽  
W. Jahn ◽  
K.C. Holmes ◽  
R.R. Schröder

Understanding the contrast formation mechanism in the EM is one of the prerequisites for artefact-free reconstruction of biological structures from images. We found that the normally used correction of contrast formation applied to zero energy loss filtered images corrupted spatial resolution. Therefore the contribution of contrast formed by inelastic electrons was reconsidered, including partial coherence of inelastically scattered electrons and lens aberrations of the microscope. Based on this, a complete description of the zero-loss contrast transfer function (CTF) is now possible.We used tobacco mosaic virus (TMV), a biological sample known at atomic resolution, for definition of optimum CTF-parameters to reconstruct defocus series from an EFTEM LEO 912. CTF theory as known so far describes image contrast in the weak phase approximation as a linear sum of amplitude and phase contrast. The contribution of amplitude contrast (ratio of amplitude to phase contrast A/P) was determined to be between 7% and 5 % for unfiltered images and 12-14 % for zero-loss filtered images. However, in a filter microscope we remove electrons from the image, so we expect a higher amplitude contrast than in non-filtered images.


Author(s):  
Josˇko Deur ◽  
Davor Hrovat ◽  
Josˇko Petric´ ◽  
Zˇeljko Sˇitum

The paper presents experimental results which show significant changes of the intake manifold air temperature during fast tip-in/tip-out engine transients. An adequate two-state polytropic manifold model is developed and experimentally validated. An emphasis is on the derivation and parameterization of a time-variant structure of the heat transfer coefficient. The polytropic manifold model is extended to a three-state form for the more general case of different heat transfer properties for the manifold plenum and runners. An influence of the engine back flow on the runner thermal transients is observed. A simple extension of the three-state model with the back flow effect is proposed.


Sign in / Sign up

Export Citation Format

Share Document