neutrino mass models
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 24)

H-INDEX

14
(FIVE YEARS 5)

2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Martin Hirsch ◽  
Rafał Masełek ◽  
Kazuki Sakurai

AbstractA certain class of neutrino mass models predicts long-lived particles whose electric charge is four or three times larger than that of protons. Such particles, if they are light enough, may be produced at the LHC and detected. We investigate the possibility of observing those long-lived multi-charged particles with the MoEDAL detector, which is sensitive to long-lived particles with low velocities ($$\beta $$ β ) and a large electric charge (Z) with $$\Theta \equiv \beta /Z \lesssim 0.15$$ Θ ≡ β / Z ≲ 0.15 . We demonstrate that multi-charged scalar particles with a large Z give three-fold advantage for MoEDAL; reduction of $$\Theta $$ Θ due to strong interactions with the detector, and enhancement of the photon-fusion process, which not only increases the production cross-section but also lowers the average production velocity, reducing $$\Theta $$ Θ further. To demonstrate the performance of MoEDAL on multi-charged long-lived particles, two concrete neutrino mass models are studied. In the first model, the new physics sector is non-coloured and contains long-lived particles with electric charges 2, 3 and 4. A model-independent study finds MoEDAL can expect more than 1 signal event at the HL-LHC ($$L = 300$$ L = 300 $$\hbox {fb}^{-1}$$ fb - 1 ) if these particles are lighter than 600, 1100 and 1430 GeV, respectively. These compare with the current ATLAS limits 650, 780 and 920 GeV for $$L = 36$$ L = 36 $$\hbox {fb}^{-1}$$ fb - 1 . The second model has a coloured new physics sector, which possesses long-lived particles with electric charges 4/3, 7/3 and 10/3. The corresponding MoEDAL’s mass reaches at the HL-LHC are 1400, 1650 and 1800 GeV, respectively, which compare with the current CMS limits 1450, 1480 and 1510 GeV for $$L = 36$$ L = 36 $$\hbox {fb}^{-1}$$ fb - 1 . In a model-specific study we explore the parameter space of neutrino mass generation models and identify the regions that can be probed with MoEDAL at the end of Run-3 and the High-Luminosity LHC.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Xin Wang ◽  
Shun Zhou

Abstract In a class of neutrino mass models with modular flavor symmetries, it has been observed that CP symmetry is preserved at the fixed point (or stabilizer) of the modulus parameter τ = i, whereas significant CP violation emerges within the neighbourhood of this stabilizer. In this paper, we first construct a viable model with the modular $$ {A}_5^{\prime } $$ A 5 ′ symmetry, and explore the phenomenological implications for lepton masses and flavor mixing. Then, we introduce explicit perturbations to the stabilizer at τ = i, and present both numerical and analytical results to understand why a small deviation from the stabilizer leads to large CP violation. As low-energy observables are very sensitive to the perturbations to model parameters, we further demonstrate that the renormalization-group running effects play an important role in confronting theoretical predictions at the high-energy scale with experimental measurements at the low-energy scale.


2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Miguel Escudero ◽  
Samuel J. Witte

AbstractThe majoron, a neutrinophilic pseudo-Goldstone boson conventionally arising in the context of neutrino mass models, can damp neutrino free-streaming and inject additional energy density into neutrinos prior to recombination. The combination of these effects for an eV-scale mass majoron has been shown to ameliorate the outstanding $$H_0$$ H 0 tension, however only if one introduces additional dark radiation at the level of $$\Delta N_{\mathrm{eff}} \sim 0.5$$ Δ N eff ∼ 0.5 . We show here that models of low-scale leptogenesis can naturally source this dark radiation by generating a primordial population of majorons from the decays of GeV-scale sterile neutrinos in the early Universe. Using a posterior predictive distribution conditioned on Planck2018+BAO data, we show that the value of $$H_0$$ H 0 observed by the SH$$_0$$ 0 ES collaboration is expected to occur at the level of $$\sim 10\%$$ ∼ 10 % in the primordial majoron cosmology (to be compared with $$\sim 0.1\%$$ ∼ 0.1 % in the case of $$\Lambda $$ Λ CDM). This insight provides an intriguing connection between the neutrino mass mechanism, the baryon asymmetry of the Universe, and the discrepant measurements of $$H_0$$ H 0 .


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Salvador Centelles Chuliá ◽  
Rahul Srivastava ◽  
Avelino Vicente

Abstract After developing a general criterion for deciding which neutrino mass models belong to the category of inverse seesaw models, we apply it to obtain the Dirac analogue of the canonical Majorana inverse seesaw model. We then generalize the inverse seesaw model and obtain a class of inverse seesaw mechanisms both for Majorana and Dirac neutrinos. We further show that many of the models have double or multiple suppressions coming from tiny symmetry breaking “μ-parameters”. These models can be tested both in colliders and with the observation of lepton flavour violating processes.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Maria Mehmood ◽  
Mansoor Ur Rehman ◽  
Qaisar Shafi

Abstract We explore proton decay in a class of realistic supersymmetric flipped SU(5) models supplemented by a U(1)R symmetry which plays an essential role in implementing hybrid inflation. Two distinct neutrino mass models, based on inverse seesaw and type I seesaw, are identified, with the latter arising from the breaking of U(1)R by nonrenormalizable superpotential terms. Depending on the neutrino mass model an appropriate set of intermediate scale color triplets from the Higgs superfields play a key role in proton decay channels that include p → (e+, μ+) π0, p → (e+, μ+) K0, p →$$ \overline{v}{\pi}^{+} $$ v ¯ π + , and p →$$ \overline{v}{K}^{+} $$ v ¯ K + . We identify regions of the parameter space that yield proton lifetime estimates which are testable at Hyper-Kamiokande and other next generation experiments. We discuss how gauge coupling unification in the presence of intermediate scale particles is realized, and a Z4 symmetry is utilized to show how such intermediate scales can arise in flipped SU(5). Finally, we compare our predictions for proton decay with previous work based on SU(5) and flipped SU(5).


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
John Gargalionis ◽  
Raymond R. Volkas

Abstract Building UV completions of lepton-number-violating effective operators has proved to be a useful way of studying and classifying models of Majorana neutrino mass. In this paper we describe and implement an algorithm that systematises this model-building procedure. We use the algorithm to generate computational representations of all of the tree-level completions of the operators up to and including mass-dimension 11. Almost all of these correspond to models of radiative neutrino mass. Our work includes operators involving derivatives, updated estimates for the bounds on the new-physics scale associated with each operator, an analysis of various features of the models, and a look at some examples. We find that a number of operators do not admit any completions not also generating lower-dimensional operators or larger contributions to the neutrino mass, ruling them out as playing a dominant role in the neutrino-mass generation. Additionally, we show that there are at most five models containing three or fewer exotic multiplets that predict new physics that must lie below 100 TeV. Accompanying this work we also make available a searchable database containing all of our results and the code used to find the completions. We emphasise that our methods extend beyond the study of neutrino-mass models, and may be useful for generating completions of high-dimensional operators in other effective field theories. Example code: ref. [37].


2020 ◽  
Vol 102 (11) ◽  
Author(s):  
Xiang-Gan Liu ◽  
Chang-Yuan Yao ◽  
Bu-Yao Qu ◽  
Gui-Jun Ding

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Miguel Escudero ◽  
Jacobo Lopez-Pavon ◽  
Nuria Rius ◽  
Stefan Sandner

Abstract At present, cosmological observations set the most stringent bound on the neutrino mass scale. Within the standard cosmological model (ΛCDM), the Planck collaboration reports ∑mv< 0.12 eV at 95 % CL. This bound, taken at face value, excludes many neutrino mass models. However, unstable neutrinos, with lifetimes shorter than the age of the universe τν ≲ tU, represent a particle physics avenue to relax this constraint. Motivated by this fact, we present a taxonomy of neutrino decay modes, categorizing them in terms of particle content and final decay products. Taking into account the relevant phenomenological bounds, our analysis shows that 2-body decaying neutrinos into BSM particles are a promising option to relax cosmological neutrino mass bounds. We then build a simple extension of the type I seesaw scenario by adding one sterile state ν4 and a Goldstone boson ϕ, in which νi→ ν4ϕ decays can loosen the neutrino mass bounds up to ∑mv ∼ 1 eV, without spoiling the light neutrino mass generation mechanism. Remarkably, this is possible for a large range of the right-handed neutrino masses, from the electroweak up to the GUT scale. We successfully implement this idea in the context of minimal neutrino mass models based on a U(1)μ−τ flavor symmetry, which are otherwise in tension with the current bound on ∑mv.


Sign in / Sign up

Export Citation Format

Share Document