partial coherence
Recently Published Documents


TOTAL DOCUMENTS

546
(FIVE YEARS 89)

H-INDEX

47
(FIVE YEARS 5)

Diagnostics ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 163
Author(s):  
Gerd U. Auffarth ◽  
Tadas Naujokaitis ◽  
Louise Blöck ◽  
Anna Daghbashyan ◽  
Jan Meis ◽  
...  

The aim of this prospective clinical study was to establish and verify an adaptation for axial length (AL) measurement in silicone oil (SO)-filled pseudophakic eyes with a Scheimpflug and partial coherence interferometry (PCI)-based biometer. The AL was measured with a Pentacam AXL (OCULUS Optikgeräte GmbH, Wetzler, Germany) and IOLMaster 700 (Carl Zeiss Meditec, Jena, Germany). The coefficients of variation (CoV) and the mean systematic difference (95% confidence interval (CI)) between the devices were calculated. After implementing a setting for measuring AL in tamponaded eyes with a Pentacam based on data of 29 eyes, another 12 eyes were examined for verification. The mean AL obtained with the Pentacam was 25.53 ± 1.94 mm (range: 21.70 to 30.76 mm), and with IOLMaster, 24.73 ± 1.97 mm (ranged 20.84 to 29.92 mm), resulting in a mean offset of 0.80 ± 0.08 mm (95% CI: 0.77, 0.83 mm), p < 0.001. The AL values of both devices showed a strong linear correlation (r = 0.999). Verification data confirmed good agreement, with a statistically and clinically non-significant mean difference of 0.02 ± 0.04 (95% CI: −0.01, 0.05) mm, p = 0.134. We implemented a specific adaptation for obtaining reliable AL values in SO-filled eyes with the Pentacam AXL.


2022 ◽  
Vol 70 (1) ◽  
pp. 107 ◽  
Author(s):  
Roberto Gonzalez-Salinas ◽  
Sara González-Godínez ◽  
Roxana Saucedo-Urdapilleta ◽  
Mariana Mayorquín-Ruiz ◽  
Cecilio Velasco-Barona ◽  
...  

2021 ◽  
Author(s):  
Mate Aller ◽  
Heidi Solberg Okland ◽  
Lucy J MacGregor ◽  
Helen Blank ◽  
Matthew H. Davis

Speech perception in noisy environments is enhanced by seeing facial movements of communication partners. However, the neural mechanisms by which audio and visual speech are combined are not fully understood. We explore MEG phase locking to auditory and visual signals in MEG recordings from 14 human participants (6 female) that reported words from single spoken sentences. We manipulated the acoustic clarity and visual speech signals such that critical speech information is present in auditory, visual or both modalities. MEG coherence analysis revealed that both auditory and visual speech envelopes (auditory amplitude modulations and lip aperture changes) were phase-locked to 2-6Hz brain responses in auditory and visual cortex, consistent with entrainment to syllable-rate components. Partial coherence analysis was used to separate neural responses to correlated audio-visual signals and showed non-zero phase locking to auditory envelope in occipital cortex during audio-visual (AV) speech. Furthermore, phase-locking to auditory signals in visual cortex was enhanced for AV speech compared to audio-only (AO) speech that was matched for intelligibility. Conversely, auditory regions of the superior temporal gyrus (STG) did not show above-chance partial coherence with visual speech signals during AV conditions, but did show partial coherence in VO conditions. Hence, visual speech enabled stronger phase locking to auditory signals in visual areas, whereas phase-locking of visual speech in auditory regions only occurred during silent lip-reading. Differences in these cross-modal interactions between auditory and visual speech signals are interpreted in line with cross-modal predictive mechanisms during speech perception.


Author(s):  
Danting Tang ◽  
Ping Li ◽  
Mingfei Ye ◽  
Yongming Li

Abstract Quantum coherence with respect to orthonormal bases has been studied extensively in the past few years. From the perspective of operational meaning, geometric coherence can be equal to the minimum error probability to discriminate a set of pure states [J. Phys. A: Math. Theor. 51, 414005 (2018)]. By regarding coherence as a physical resource, Baumgratz et al. [Phys. Rev. Lett. 113, 140401 (2014)] presented a comprehensive framework for coherence. Recently, geometric block-coherence as an effective block-coherence measure has been proposed. In this paper, we reveal an equivalence relationship between mixed quantum state discrimination task and geometric block-coherence, which provides an operational interpretation for geometric block-coherence and generalizes the main result in coherence resource theory. Meanwhile, we show that partial coherence is a special case of block-coherence. By linking the relationship between geometric partial coherence and quantum state discrimination tasks, we show that the value range of the two measures is the same. Finally, we reveal the relationship between geometric POVM-based coherence and quantum state discrimination task.


2021 ◽  
Author(s):  
Henri Atte Pesonen ◽  
Juha-Matti Huusko ◽  
Xiaorun Zang ◽  
Ari T Friberg ◽  
Jari Turunen ◽  
...  

Abstract We study the spectral and temporal coherence effects in the passage of a Gaussian Schell-model (GSM) scalar, plane-wave pulse train through a slab of nonlinear optical crystal exhibiting second-harmonic generation. We show that due to the nonlinear interaction the temporal and spectral degrees of coherence of the fundamental (F) and second-harmonic (SH) pulse trains at the exit facet may deviate markedly from the GSM and the global degree of coherence of the SH wave generally decreases with increasing incident F beam intensity. In addition, we find that due to the partial coherence of the incident GSM field the transmitted SH wave may show a double-peaked intensity distribution.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yuzhou Wu ◽  
Shunhua Zhang ◽  
Yong Zhong ◽  
Ailing Bian ◽  
Yang Zhang ◽  
...  

Abstract Purpose To assess the accuracy of biometric parameters measured by anterior segment optical coherence tomography (AS-OCT) and partial coherence interferometry (PCI) in prediction of effective lens position (ELP) compared with previous formulas in PACG patients. Methods 121 PACG eyes were randomly divided into training set (85 eyes) and validation set (36 eyes) with same procedure including AS-OCT, PCI, phacoemulsification and IOL implantation surgery. Preoperative anterior chamber depth (pre-ACD), scleral spur depth (SSD), scleral spur width (SSW), lens vault (LV) and cornea thickness (CT) were measured from AS-OCT image. Axial length (AL) and corneal power (K) were measured by PCI. All the 7 parameters were analyzed by multiple linear regression in training set and a statistic regression formula was developed. In validation set, one-way ANOVA was applied to compare the new regression formula with Sanders-Retzlaff-Kraff theoretic (SRK/T), Holladay 1, Haigis, and a regression formula developed in previous study. Results The coefficient of determination (R2) of different parameter combinations are 0.19 (pre-ACD, AL), 0.25 (AL, K) and 0.49 (SSD, AL, SSW) in training set. In validation set, the correlation between predicted and measured ELP are: new formula (R2 = 0.50, P = 0.9947) Holladay 1 (R2 = 0.12, P < 0.0001), SRK/T (R2 = 0.11, P < 0.0001) and Haigis (R2 = 0.06, P < 0.0001). Conclusion Among 7 tested parameters, pre-ACD contribute little in ELP prediction. Formula consist of SSD, AL and SSW showed better accuracy than other formulas tested.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Richard B. Silberstein ◽  
David A. Camfield

AbstractCreative cognition is thought to involve two processes, the creation of new ideas and the selection and retention of suitable new ideas. Neuroimaging studies suggest that the Default Mode Network contributes to the creation of new ideas while left inferior frontal and parieto-temporal cortical networks mediate the selection/retention process. Higher levels of activity in the selection/retention have been shown to be associated with stricter criteria for selection and hence the expression of fewer novel ideas. In this study, we examined the brain functional connectivity correlates of an originality score while 27 males and 27 females performed a low and a high demand visual vigilance task. Brain functional connectivity was estimated from the steady state visual evoked potential event related partial coherence. In the male group, we observed a hypothesized left frontal functional connectivity that was negatively correlated with originality in both tasks. By contrast, in the female group no significant correlation between functional connectivity and originality was observed in either task. We interpret the findings to suggest that males and females engaged different functional networks when performing the vigilance tasks. We conclude with a consideration of the possible risks when data pooling across sex in studies of higher cortical function.


2021 ◽  
Vol 6 (4) ◽  
pp. 36
Author(s):  
Francesco Guzzi ◽  
George Kourousias ◽  
Alessandra Gianoncelli ◽  
Fulvio Billè ◽  
Sergio Carrato

X-ray ptychography is an advanced computational microscopy technique, which is delivering exceptionally detailed quantitative imaging of biological and nanotechnology specimens, which can be used for high-precision X-ray measurements. However, coarse parametrisation in propagation distance, position errors and partial coherence frequently threaten the experimental viability. In this work, we formally introduce these actors, solving the whole reconstruction as an optimisation problem. A modern deep learning framework was used to autonomously correct the setup incoherences, thus improving the quality of a ptychography reconstruction. Automatic procedures are indeed crucial to reduce the time for a reliable analysis, which has a significant impact on all the fields that use this kind of microscopy. We implemented our algorithm in our software framework, SciComPty, releasing it as open-source. We tested our system on both synthetic datasets, as well as on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.


Sign in / Sign up

Export Citation Format

Share Document