Development of Raman-Mie lidar system for aerosol and water vapor profiling

Author(s):  
Min Tan ◽  
JiWei Xu ◽  
DeCheng Wu ◽  
ChenBo Xie ◽  
YingJian Wang ◽  
...  
Keyword(s):  
2011 ◽  
Vol 112 (2) ◽  
pp. 230-235 ◽  
Author(s):  
Bo Liu ◽  
Decheng Wu ◽  
Aiyuan Fan ◽  
Bangxin Wang ◽  
Lin Yuan ◽  
...  
Keyword(s):  

SOLA ◽  
2020 ◽  
Vol 16A (Special_Edition) ◽  
pp. 6-11
Author(s):  
Masaki Katsumata ◽  
Kyoko Taniguchi ◽  
Tomoaki Nishizawa

2017 ◽  
Vol 37 (2) ◽  
pp. 0201003
Author(s):  
洪光烈 Hong Guanglie ◽  
李嘉唐 Li Jiatang ◽  
孔 伟 Kong Wei ◽  
葛 烨 Ge Ye ◽  
舒 嵘 Shu Rong

2018 ◽  
Vol 176 ◽  
pp. 05035
Author(s):  
Constantino Muñoz-Porcar ◽  
Adolfo Comeron ◽  
Michaël Sicard ◽  
Ruben Barragan ◽  
David Garcia-Vizcaino ◽  
...  

A method for determining the calibration factor of the water vapor channel of a Raman lidar, based on zenith measurements of diffuse sunlight and on assumptions regarding some system parameters and Raman scattering models, has been applied to the lidar system of Universitat Politècnica de Catalunya (UPC; Technical University of Catalonia, Spain). Results will be analyzed in terms of stability and comparison with typical methods relying on simultaneous radiosonde measurements.


1985 ◽  
Author(s):  
W.M. Hall ◽  
I. Taback ◽  
R.L. Kanimer ◽  
J.J. Degnan ◽  
E.V. Browell

2012 ◽  
Vol 5 (1) ◽  
pp. 589-625
Author(s):  
R. E. Mamouri ◽  
A. Papayannis ◽  
V. Amiridis ◽  
D. Müller ◽  
P. Kokkalis ◽  
...  

Abstract. A novel procedure has been developed to retrieve, simultaneously, the optical, microphysical and chemical properties of tropospheric aerosols with a multi-wavelength Raman lidar system in the troposphere over an urban site (Athens, Greece: 37.9° N, 23.6° E, 200 m a.s.l.) using data obtained during the European Space Agency (ESA) THERMOPOLIS project which took place between 15–31 July 2009 over the Greater Athens Area (GAA). We selected to apply our procedure for a case study of intense aerosol layers occurred on 20–21 July 2009. The National Technical University of Athens (NTUA) EOLE 6-wavelength Raman lidar system has been used to provide the vertical profiles of the optical properties of aerosols (extinction and backscatter coefficients, lidar ratio) and the water vapor mixing ratio. An inversion algorithm was used to derive the mean aerosol microphysical properties (mean effective radius – reff), single-scattering albedo (ω) and mean complex refractive index (m) at selected heights in the 2–3 km height region. We found that reff was 0.3–0.4 μm, ω at 532 nm ranged from 0.63 to 0.88 and m ranged from 1.45 + 0.015i to 1.56 + 0.05i, in good accordance with in situ aircraft measurements. The final data set of the aerosol microphysical properties along with the water vapor and temperature profiles were incorporated into the ISORROPIA model to infer an in situ aerosol composition consistent with the retrieved m and ω values. The retrieved aerosol chemical composition in the 2–3 km height region gave a variable range of sulfate (0–60%) and organic carbon (OC) content (0–50%), although the OC content increased (up to 50%) and the sulfate content dropped (up to 30%) around 3 km height; in connection with the retrieved low ω value (0.63), indicates the presence of absorbing biomass burning smoke mixed with urban haze. Finally, the retrieved aerosol microphysical properties were compared with column-integrated sunphotometer data.


Sign in / Sign up

Export Citation Format

Share Document