calibration factor
Recently Published Documents


TOTAL DOCUMENTS

195
(FIVE YEARS 38)

H-INDEX

19
(FIVE YEARS 3)

Author(s):  
Basem Elsaka ◽  
Olivier Francis ◽  
Jürgen Kusche

AbstractIn December 2019, the latest generation transportable superconducting gravimeter (SG) iGrav-043 purchased by the University of Bonn was installed in the Walferdange Underground Laboratory for Geodynamics (WULG) in the Grand Duchy of Luxembourg. In this paper, we estimate the calibration factor of the iGrav-043, which is essential for long-term gravity monitoring. We used simultaneously collected gravity data from the un-calibrated iGrav-043 and the calibrated Observatory superconducting gravimeter OSG-CT040 that operates continuously at WULG since 2002. The tidal analysis provides a simple way to transfer the calibration factor of one SG to the other. We then assess and compare tidal analyses, instrumental drifts and high frequency noises. After 20 years of continuous operation, the instrumental drift of the OSG-CT040 is almost zero. From 533 days of joint operation, we found that the instrumental drift of iGrav-043 exhibits a composite behavior: just after the setup and for two months a fast exponential decrease of 171 nm s−2, then a linear with a rate of 66 nm s−2 ± 10 nm s−2 per year. We suggest that a period of 3 months is sufficient for calibrating the iGrav. Accidental electrical power cuts triggered slight differences in the reaction and recovery of the OSG-CT040 and iGrav-043. However, it has been found that the long-term linear behavior of the drift was not affected.


Author(s):  
Mahdi Rajabi ◽  
Patrick Gerard ◽  
Jennifer Ogle

Crash frequency has been identified by many experts as one of the most important safety measures, and the Highway Safety Manual (HSM) encompasses the most commonly accepted predictive models for predicting the crash frequency on specific road segments and intersections. The HSM recommends that the models be calibrated using data from a jurisdiction where the models will be applied. One of the most common start-up issues with the calibration process is how to estimate the required sample size to achieve a specific level of precision, which can be a function of the variance of the calibration factor. The published research has indicated great variance in sample size requirements, and some of the sample size requirements are so large that they may deter state departments of transportation (DOT) from conducting calibration studies. In this study, an equation is derived to estimate the sample size based on the coefficient of variation of the calibration factor and the coefficient of variation of the observed crashes. Using this equation, a framework is proposed for state and local agencies to estimate the required sample size for calibration based on their desired level of precision. Using two recent calibration studies, South Carolina and North Carolina, it is shown that the proposed framework leads to more accurate estimates of sample size compared with current HSM recommendations. Whereas the minimum sample size requirement published in the HSM is based on the summation of the observed crashes, this paper demonstrates that the summation of the observed crashes may result in calibration factors that are less likely to be equally precise and the coefficient of the variation of the observed crashes can be considered instead.


2021 ◽  
Vol 14 (4) ◽  
pp. 96-102
Author(s):  
K. A. Sednev ◽  
V. A. Nekrasov ◽  
V. S. Repin

The article proposes an empirical method for constructing a universal calibration for a scintillation gamma spectrometer, which allows determining the activity and specific activity of 137Cs with an accuracy of no more than 15% in counting samples of arbitrary density and volume in cylindrical containers with a volume of 250 ml and 500 ml. To construct calibration ratios, measurements of 137Cs sample media prepared on the basis of materials of different densities (quartz sand, plastic granules and sawdust) were performed. The calibration was carried out by preparing samples from the listed materials with a volume of 50 to 250 ml in increments of 50 ml for a 250 ml container and 100-500 ml in increments of 100 ml for a 500 ml container. Along with taking into account the volume of the counting sample, its weighing was also carried out. The result of the measurements performed for each material was the ratio of the activity of the counting sample to the counting intensity in the 137Cs window, depending on the volume. The universal calibration factor is obtained by taking into account the counting rate from the mass and volume of the sample for the corresponding measuring vessel. 


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Alessandro Desy ◽  
Guillaume F. Bouvet ◽  
Étienne Croteau ◽  
Nancy Lafrenière ◽  
Éric E. Turcotte ◽  
...  

Abstract Background Accurate QSPECT is crucial in dosimetry-based, personalized radiopharmaceutical therapy with 177Lu and other radionuclides. We compared the quantitative performance of three NaI(Tl)-crystal SPECT/CT systems equipped with low-energy high-resolution collimators from two vendors (Siemens Symbia T6; GE Discovery 670 and NM/CT 870 DR). Methods Using up to 14 GBq of 99mTc in planar mode, we determined the calibration factor and dead-time constant under the assumption that these systems have a paralyzable behaviour. We monitored their response when one or both detectors were activated. QSPECT capability was validated by SPECT/CT imaging of a customized NEMA phantom containing up to 17 GBq of 99mTc. Acquisitions were reconstructed with a third-party ordered subset expectation maximization algorithm. Results The Siemens system had a higher calibration factor (100.0 cps/MBq) and a lower dead-time constant (0.49 μs) than those from GE (75.4–87.5 cps/MBq; 1.74 μs). Activities of up to 3.3 vs. 2.3–2.7 GBq, respectively, were quantifiable by QSPECT before the observed count rate plateaued or decreased. When used in single-detector mode, the QSPECT capability of the former system increased to 5.1 GBq, whereas that of the latter two systems remained independent of the detectors activation mode. Conclusion Despite similar hardware, SPECT/CT systems’ response can significantly differ at high count rate, which impacts their QSPECT capability in a post-therapeutic setting.


2021 ◽  
Author(s):  
Haoyan Ma ◽  
Zheng Wang ◽  
Qiuyi Zhang ◽  
Shunli Li ◽  
Hongxin Zhao ◽  
...  

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Hajime Ichikawa ◽  
Masahisa Onoguchi ◽  
Takayuki Shibutani ◽  
Toyohiro Kato ◽  
Toshimune Ito ◽  
...  

2021 ◽  
Author(s):  
Iryna Gryshanova ◽  
Ivan Korobko

Abstract In present paper, the focus is given to possible ways of increasing accuracy for existing ultrasonic time-of-flight water meters. We will consider transducers with coaxial reflectors working at laminar, transitional and turbulent regimes within their measurement range. Considering error curves of such meters, we can easily resume that they are non-linear and not simply corrected using only one polynomic function. Measurements in laboratory and field conditions demonstrate that there is a shift in the ultrasonic meter’s calibration factor. The deviation of readings starts at Re = 5 000–10 000 and the maximum value is reached at Re = 160. Great inaccuracies referred to the transition from laminar flow to turbulent take place abruptly, which lead to undesirable errors. To understand this phenomenon, the theoretical basis of ultrasonic measurements was analyzed and revealed that typical algorithm for determination of the calibration factor is very questionable since it contains simplified information about velocity profile distribution. Trying to fix this problem, we applied computational fluid dynamics (CFD) modelling of ultrasonic meters with different variants of flow straighteners. Ranges of applicability of a particular turbulence model for a correct description of the velocity profile and other flow parameters in metrological purposes have been evaluated. Due to applied techniques, the flow profile sensitivities of various meter configurations are investigated at different Reynolds numbers comparing to real experiments. To get an improved ultrasonic meter design recirculation zones and flow separation regions inside the flow transducer have been eliminated. As a result, the accuracy of the ultrasonic water meter has increased. Simulations demonstrated reasonable agreement to the error curves obtained on the calibration facility for a whole measurement range.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1705
Author(s):  
In-Je Kang ◽  
Chang-Hyun Cho ◽  
Hyonu Chang ◽  
Soo-Ouk Jang ◽  
Hyun-Jae Park ◽  
...  

To validate the possibility of the developed microwave plasma source with a novel structure for plasma aerosol deposition, the characteristics of the plasma flow velocity generated from the microwave plasma source were investigated by a Mach probe with pressure variation. Simulation with the turbulent model was introduced to deduce calibration factor of the Mach probe and to compare experimental measurements for analyses of collisional plasma conditions. The results show calibration factor does not seem to be a constant parameter and highly dependent on the collision parameter. The measured plasma flow velocity, which witnessed fluctuations produced by a shock flow, was between 400 and 700 m/s. The optimized conditions for microwave plasma assisted aerosol deposition were derived by the results obtained from analyses of the parameters of microwave plasma jet. Under the optimized conditions, Y2O3 coatings deposited on an aluminum substrate were investigated using scanning electron microscope. The results presented in this study show the microwave plasma assisted aerosol deposition with the developed microwave plasma source is highly feasible for thick films with >50 μm.


Sign in / Sign up

Export Citation Format

Share Document