Progress in all-solid-state deep-ultraviolet coherent light sources

Author(s):  
Michio Oka ◽  
L. Y. Liu ◽  
Werner Wiechmann ◽  
Yasujiro Taguchi ◽  
Hiroyuki Wada ◽  
...  
Author(s):  
Qinjun Peng ◽  
Zhimin Wang ◽  
Shenjin Zhang ◽  
Fengfeng Zhang ◽  
Feng Yang ◽  
...  

Author(s):  
Alexey V. Kavokin ◽  
Jeremy J. Baumberg ◽  
Guillaume Malpuech ◽  
Fabrice P. Laussy

Polariton devices offer multiple advantages compared to conventional semiconductor devices. The bosonic nature of exciton polaritons offers opportunity of realisation of polariton lasers: coherent light sources based on bosonic condensates of polaritons. The final state stimulation of any transition feeding a polariton condensate has been used in many proposals such as for terahertz lasers based on polariton lasers. Furthermore, large coherence lengths of exciton-polaritons in microcavities open the way to realisation of polariton transport devices including transistors and logic gates. Being bosonic spin carriers, exciton-polaritons may be used in spintronic devices and polarisation switches. This chapter offers an overview on the existing proposals for polariton devices.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Mingming Jiang ◽  
Fupeng Zhang ◽  
Kai Tang ◽  
Peng Wan ◽  
Caixia Kan

Achieving electrically-driven exciton-polaritons has drawn substantial attention toward developing ultralow-threshold coherent light sources, containing polariton laser devices and high-performance light-emitting diodes (LEDs). In this work, we demonstrate an electrically driven...


2021 ◽  
Vol 2021 (29) ◽  
pp. 136-140
Author(s):  
Dorukalp Durmus

The quality of building electric lighting systems can be assessed using color rendition metrics. However, color rendition metrics are limited in quantifying tunable solid-state light sources, since tunable lighting systems can generate a vast number of different white light spectra, providing flexibility in terms of color quality and energy efficiency. Previous research suggests that color rendition is multi-dimensional in nature, and it cannot be simplified to a single number. Color shifts under a test light source in comparison to a reference illuminant, changes in color gamut, and color discrimination are important dimensions of the quality of electric light sources, which are not captured by a single-numbered metric. To address the challenges in color rendition characterization of modern solid-state light sources, the development of a multi-dimensional color rendition space is proposed. The proposed continuous measure can quantify the change in color rendition ability of tunable solid-state light devices with caveats. Future work, discretization of the continuous color rendition space, will be carried out to address the shortcomings of a continuous three-dimensional space.


Sign in / Sign up

Export Citation Format

Share Document