Fully convolution neural network combined with K-means clustering algorithm for image segmentation

Author(s):  
Ying Wen ◽  
Bing He ◽  
FengXiang Qiao ◽  
Weijun Chen
Author(s):  
Vamisdhar Entireddy ◽  
Babu K Rajesh ◽  
R Sampathkumar ◽  
Jyothirmai Gandeti ◽  
Syed Shameem ◽  
...  

2021 ◽  
Author(s):  
Neeraj Kumar Rathore ◽  
Varshali Jaiswal ◽  
Varsha Sharma ◽  
Sunita Varma

Abstract Deep-Convolution Neural Network (CNN) is the branch of computer science. Deep Learning CNN is a methodology that teaches computer systems to do what comes naturally to humans. It is a method that learns by example and experience. This is a heuristic-based method to solve computationally exhaustive problems that are not resolved in a polynomial computation time like NP-Hard problems. The purpose of this research is to develop a hybrid methodology for the detection and segmentation of flower images that utilize the extension of the deep CNN. The plant, leaf, and flower image detection are the most challenging issues due to a wide variety of classes, based on their amount of texture, color distinctiveness, shape distinctiveness, and different size. The proposed methodology is implemented in Matlab with deep learning Tool Box and the dataset of flower image is taken from Kaggle with five different classes like daisy, dandelion, rose, tulip, and sunflower. This methodology takes an input of different flower images from data sets, then converts it from RGB (Red, Green, Blue) color model to the L*a*b color model. L*a*b has reduced the effort of image segmentation. The flower image segmentation has been performed by the canny edge detection algorithm which provided better results. The implemented extended deep learning convolution neural network can accurately recognize varieties of flower images. The learning accuracy of the proposed hybrid method is up to 98% that is maximizing up to + 1.89% from state of the art.


In this paper, the design of advanced road structure image segmentation approach using stroke width transformation (SWT) in convolution neural network (CNN) is proposed. The main intent of the proposed system is to acquire the aerial images for the vehicle. Basically, this image segmentation performs its operation in two forms they are operating phase and learning phase. Here the aerial image has enhanced by using the SWT transformation. Hence the main advantage of this proposes system is that it processes the entire operation in simple way with high speed. The SWT will capture the images of road areas in effective way. Hence the propose system has various features which will determine the color, width and many other.


We suggest a shading essentially based division theory using the Convolution Neural Network technique to observe tumor protests in cerebrum pictures of reverberation (MR). During this shading, the mainly based algorithmic division guideline with FCNN suggests that changing over a given dark level man picture into a shading territorial picture at that point separates the situation of tumor objects from partner man picture elective objects by fully exploiting Convolution Neural Network and bar outline package. Analysis shows that the methodology will succeed in dividing human mind images to help pathologists explicitly recognize the size and district of size.


Sign in / Sign up

Export Citation Format

Share Document