Coordination and control for automatic mobile ground control points in agricultural remote sensing

Author(s):  
Xiongzhe Han ◽  
J. Alex Thomasson
Author(s):  
Andri Suprayogi ◽  
Nurhadi Bashit

Large scale base map can be obtained by various methods, one of them is orthorectification process of remote sensing satellite imagery to eliminate the relief displacement caused by height variation of earth surface. To obtain a  map images with good quality,  it requires additional data such as sensor model in the form of rational polynomial coefficients (RPC), surface model data, and ground control points Satellite imageries with high resolution  file size are relatively large.  In order to process them,  high specification of hardwares were required. To overcome this by cutting only a portion of the images, based on certain study areas were suffer from of georeference lost so it would not be able to orthorectified. On the other hand,  in several remote sensing software such as ESA SNAP and Orfeo Toolbox (OTB)  subset or pixel extraction from satellite imagery,  preserve the imagery geometric sensor models. This research aimed at geometric accuracy of orthorectification carried out in a single scene of Pleiades Imagery within the Kepahiang Subdistrict, located at Kepahiang Regency, Bengkulu Province, by using DEMNAS and the imagery refined sensor mode, and ground control points taken using GPS Survey. Related with the raw imagery condition which consists of Panchromatic and multispectral bands, this study were separated to assembly, pan sharpening , and sensor model refinement stages prior to orthorectification carried out both in the original or full extent imagery and the result of subset extent imagery. After  these processses taken place, we measure the accuracy of each full and subset imagery.These procedures were carried out using Orfeo toolbox 6.6.0 in the Linux Mint 19 Operating system. From the process log, running time in total  were 7814.518  second for the full extent and 4321.95 seconds for the subset processess. And as a big data process, the total of full extent imageries was 83.15 GB  while the subset size  was  only 30.73 GB.  The relative accuracy of the full extent and its subset imagery were 0.431 meters. Accuracy of the  sensor model refinement process are  1.217 meters and 1.550 meters with GCP added, while the accuracu of  the orthorectifications results were  0.416 meters and 0.751 meters by using ICP.  Variation of execution time may caused by the data input size and complexity of the mathematical process carried out in each stages. Meanwhile,  the variation of accuracy may  caused by the check or control points placements above satellite Imagery which suffer from uncertainty when dealing with  the sub-pixel position or under 0.5 meters.


2021 ◽  
Author(s):  
Zachary M Miller ◽  
Joseph Hupy ◽  
Aishwarya Chandrasekaran ◽  
Guofan Shao ◽  
Songlin Fei

Abstract Unmanned Aerial Systems (UAS) serve as an excellent remote-sensing platform to fulfill an aerial imagery data collection niche previously unattainable in forestry by satellites and manned aircraft. However, for UAS-derived data to be spatially representative, a precise network of ground control points (GCP) is often required, which can be tedious and limit the logistical benefits of UAS rapid deployment capabilities, especially in densely forested areas. Therefore, methods for efficient data collection without GCPs are highly desired in UAS remote sensing. Here, we demonstrate the use of postprocessing kinematic (PPK) technology to obtain subcentimeter precision in datasets of forested areas without the need for placing GCPs. We evaluated two key measures, positional variability and time efficiency, of the PPK technology by comparing them to traditional GCP methods. Results show that PPK displays consistently higher positional precision than traditional GCP approaches. Moreover, PPK surveys and processing take less time to complete than traditional GCP methods and require fewer logistical steps, especially in image acquisition. The time and resource savings with PPK as compared to GCP processing are undeniable. We conclude that PPK technology provides a practical means to produce precise aerial forest surveys. Study Implications Unmanned Aerial Systems (UAS) have enormous potential for lowering costs and streamlining practices in the forestry management and research community. Despite this potential, however, UAS forestry applications have been limited in scope and precision because of a reliance on using ground-based GPS technology to survey ground control points (GCP), which are time intensive and require an open view of the sky. Such a need for a ground-based GCP survey, along with forest canopy serving to limit and scatter incoming GPS signals, diminishes the potential for rapid deployment and precision mapping offered by UAS. Fortunately, Postprocessing-Kinematic (PPK) GPS technology lowers these barriers by providing the means to seamlessly gather highly precise UAS imagery without needing to conduct time-intensive ground-based surveys. This study compares the precision and time-effectiveness between traditional GCP marker surveys and PPK correction methods.


2016 ◽  
Vol 62 (233) ◽  
pp. 486-496 ◽  
Author(s):  
C. PAPASODORO ◽  
A. ROYER ◽  
A. LANGLOIS ◽  
E. BERTHIER

ABSTRACTThe study of glaciers and ice caps in remote and cloudy regions remains difficult using current remote sensing tools. Here the potential of stereo radargrammetry (SRG) with RADARSAT-2 Wide Ultra-Fine images is explored for DEM extraction, elevation changes and mass-balance calculations on Barnes Ice Cap (Nunavut, Canada). Over low-relief terrain surrounding Barnes, a vertical precision of ~7 m (1σ confidence level) is measured, as well as an average vertical bias of ~4 m. Moreover, we show that the C-band penetration depth over the ice cap is insignificant at this time of the year (i.e. late ablation season). This is likely due to a wet surface and the presence of superimposed ice that leads to a surface radar response. Comparing the SRG DEMs with other datasets, an historical glacier-wide mass balance of −0.52 ± 0.19 m w.e. a−1is estimated for 1960–2013, whereas it decreases to −1.06 ± 0.84 m w.e. a−1between 2005 and 2013. This clear acceleration of mass loss is in agreement with other recent studies. Given its all-weather functionality and its possible use without ground control points, the RADARSAT-2 SRG technology represents an appropriate alternative for glacier monitoring in cloudy and remote regions.


Sign in / Sign up

Export Citation Format

Share Document