On the degrees of freedom of the phase retrieval problem in phase space

Author(s):  
Markus E. Testorf
Author(s):  
Flavio Mercati

This chapter explains in detail the current Hamiltonian formulation of SD, and the concept of Linking Theory of which (GR) and SD are two complementary gauge-fixings. The physical degrees of freedom of SD are identified, the simple way in which it solves the problem of time and the problem of observables in quantum gravity are explained, and the solution to the problem of constructing a spacetime slab from a solution of SD (and the related definition of physical rods and clocks) is described. Furthermore, the canonical way of coupling matter to SD is introduced, together with the operational definition of four-dimensional line element as an effective background for matter fields. The chapter concludes with two ‘structural’ results obtained in the attempt of finding a construction principle for SD: the concept of ‘symmetry doubling’, related to the BRST formulation of the theory, and the idea of ‘conformogeometrodynamics regained’, that is, to derive the theory as the unique one in the extended phase space of GR that realizes the symmetry doubling idea.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rujia Li ◽  
Liangcai Cao

AbstractPhase retrieval seeks to reconstruct the phase from the measured intensity, which is an ill-posed problem. A phase retrieval problem can be solved with physical constraints by modulating the investigated complex wavefront. Orbital angular momentum has been recently employed as a type of reliable modulation. The topological charge l is robust during propagation when there is atmospheric turbulence. In this work, topological modulation is used to solve the phase retrieval problem. Topological modulation offers an effective dynamic range of intensity constraints for reconstruction. The maximum intensity value of the spectrum is reduced by a factor of 173 under topological modulation when l is 50. The phase is iteratively reconstructed without a priori knowledge. The stagnation problem during the iteration can be avoided using multiple topological modulations.


Author(s):  
Huug van den Dool

How many degrees of freedom are evident in a physical process represented by f(s, t)? In some form questions about “degrees of freedom” (d.o.f.) are common in mathematics, physics, statistics, and geophysics. This would mean, for instance, in how many independent directions a weight suspended from the ceiling could move. Dofs are important for three reasons that will become apparent in the remaining chapters. First, dofs are critically important in understanding why natural analogues can (or cannot) be applied as a forecast method in a particular problem (Chapter 7). Secondly, understanding dofs leads to ideas about truncating data sets efficiently, which is very important for just about any empirical prediction method (Chapters 7 and 8). Lastly, the number of dofs retained is one aspect that has a bearing on how nonlinear prediction methods can be (Chapter 10). In view of Chapter 5 one might think that the total number of orthogonal directions required to reproduce a data set is the dof. However, this is impractical as the dimension would increase (to infinity) with ever denser and slightly imperfect observations. Rather we need a measure that takes into account the amount of variance represented by each orthogonal direction, because some directions are more important than others. This allows truncation in EOF space without lowering the “effective” dof very much. We here think schematically of the total atmospheric or oceanic variance about the mean state as being made up by N equal additive variance processes. N can be thought of as the dimension of a phase space in which the atmospheric state at one moment in time is a point. This point moves around over time in the N-dimensional phase space. The climatology is the origin of the phase space. The trajectory of a sequence of atmospheric states is thus a complicated Lissajous figure in N dimensions, where, importantly, the range of the excursions in each of the N dimensions is the same in the long run. The phase space is a hypersphere with an equal probability radius in all N directions.


Author(s):  
Jean Zinn-Justin

The functional integral representation of the density matrix at thermal equilibrium in non-relativistic quantum mechanics (QM) with many degrees of freedom, in the grand canonical formulation is introduced. In QM, Hamiltonians H(p,q) can be also expressed in terms of creation and annihilation operators, a method adapted to the study of perturbed harmonic oscillators. In the holomorphic formalism, quantum operators act by multiplication and differentiation on a vector space of analytic functions. Alternatively, they can also be represented by kernels, functions of complex variables that correspond in the classical limit to a complex parametrization of phase space. The formalism is adapted to the description of many-body boson systems. To this formalism corresponds a path integral representation of the density matrix at thermal equilibrium, where paths belong to complex spaces, instead of the more usual position–momentum phase space. A parallel formalism can be set up to describe systems with many fermion degrees of freedom, with Grassmann variables replacing complex variables. Both formalisms can be generalized to quantum gases of Bose and Fermi particles in the grand canonical formulation. Field integral representations of the corresponding quantum partition functions are derived.


2010 ◽  
Vol 47 (8) ◽  
pp. 081001
Author(s):  
廖天河 Liao Tianhe ◽  
高穹 Gao Qiong ◽  
崔远峰 Cui Yuanfeng ◽  
宋凯洋 Song Kaiyang

Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 290 ◽  
Author(s):  
Ivan Agullo ◽  
Javier Olmedo ◽  
Vijayakumar Sreenath

This paper presents a computational algorithm to derive the theory of linear gauge invariant perturbations on anisotropic cosmological spacetimes of the Bianchi I type. Our code is based on the tensor algebra packages xTensor and xPert, within the computational infrastructure of xAct written in Mathematica. The algorithm is based on a Hamiltonian, or phase space formulation, and it provides an efficient and transparent way of isolating the gauge invariant degrees of freedom in the perturbation fields and to obtain the Hamiltonian generating their dynamics. The restriction to Friedmann–Lemaître–Robertson–Walker spacetimes is straightforward.


1981 ◽  
Vol 28 (6) ◽  
pp. 735-738 ◽  
Author(s):  
J.G. Walker

Sign in / Sign up

Export Citation Format

Share Document