bianchi i
Recently Published Documents


TOTAL DOCUMENTS

226
(FIVE YEARS 55)

H-INDEX

25
(FIVE YEARS 4)

Author(s):  
Alice Boldrin ◽  
Przemyslaw Malkiewicz

Abstract We apply the Dirac procedure for constrained systems to the Arnowitt-Deser-Misner formalism linearized around the Bianchi I universe. We discuss and employ basic concepts such as Dirac observables, Dirac brackets, gauge-fixing conditions, reduced phase space, physical Hamiltonian, canonical isomorphism between different gauge-fixing surfaces and spacetime reconstruction. We relate this approach to the gauge-fixing procedure for non-perturbative canonical relativity. We discuss the issue of propagating a basis for the scalar-vector-tensor decomposition as, in an anisotropic universe, the wavefronts of plane waves undergo a non-trivial evolution. We show that the definition of a gravitational wave as a traceless-transverse mode of the metric perturbation needs to be revised. Moreover there exist coordinate systems in which a polarization mode of the gravitational wave is given entirely in terms of a scalar metric perturbation. We first develop the formalism for the universe with a single minimally coupled scalar field and then extend it to the multi-field case. The obtained fully canonical formalism will serve as a starting point for a complete quantization of the cosmological perturbations and the cosmological background.


Author(s):  
Jonathan Steven Engle ◽  
Christopher Beetle ◽  
Matthew Ernest Hogan ◽  
Phillip Mendonça
Keyword(s):  

Universe ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 327
Author(s):  
Gabriele Barca ◽  
Eleonora Giovannetti ◽  
Giovanni Montani

We present a review on some of the basic aspects concerning quantum cosmology in the presence of cut-off physics as it has emerged in the literature during the last fifteen years. We first analyze how the Wheeler–DeWitt equation describes the quantum Universe dynamics, when a pure metric approach is concerned, showing how, in general, the primordial singularity is not removed by the quantum effects. We then analyze the main implications of applying the loop quantum gravity prescriptions to the minisuperspace model, i.e., we discuss the basic features of the so-called loop quantum cosmology. For the isotropic Universe dynamics, we compare the original approach, dubbed the μ0 scheme, and the most commonly accepted formulation for which the area gap is taken as physically scaled, i.e., the so-called μ¯ scheme. Furthermore, some fundamental results concerning the Bianchi Universes are discussed, especially with respect to the morphology of the Bianchi IX model. Finally, we consider some relevant criticisms developed over the last ten years about the real link existing between the full theory of loop quantum gravity and its minisuperspace implementation, especially with respect to the preservation of the internal SU(2) symmetry. In the second part of the review, we consider the dynamics of the isotropic Universe and of the Bianchi models in the framework of polymer quantum mechanics. Throughout the paper, we focus on the effective semiclassical dynamics and study the full quantum theory only in some cases, such as the FLRW model and the Bianchi I model in the Ashtekar variables. We first address the polymerization in terms of the Ashtekar–Barbero–Immirzi connection and show how the resulting dynamics is isomorphic to the μ0 scheme of loop quantum cosmology with a critical energy density of the Universe that depends on the initial conditions of the dynamics. The following step is to analyze the polymerization of volume-like variables, both for the isotropic and Bianchi I models, and we see that if the Universe volume (the cubed scale factor) is one of the configurational variables, then the resulting dynamics is isomorphic to that one emerging in loop quantum cosmology for the μ¯ scheme, with the critical energy density value being fixed only by fundamental constants and the Immirzi parameter. Finally, we consider the polymer quantum dynamics of the homogeneous and inhomogeneous Mixmaster model by means of a metric approach. In particular, we compare the results obtained by using the volume variable, which leads to the emergence of a singularity- and chaos-free cosmology, to the use of the standard Misner variable. In the latter case, we deal with the surprising result of a cosmology that is still singular, and its chaotic properties depend on the ratio between the lattice steps for the isotropic and anisotropic variables. We conclude the review with some considerations of the problem of changing variables in the polymer representation of the minisuperspace dynamics. In particular, on a semiclassical level, we consider how the dynamics can be properly mapped in two different sets of variables (at the price of having to deal with a coordinate dependent lattice step), and we infer some possible implications on the equivalence of the μ0 and μ¯ scheme of loop quantum cosmology.


Author(s):  
Saibal Ray ◽  
Prasenjit Paul ◽  
Rikpratik Sengupta ◽  
Neeraj Pant ◽  
Riju Nag

In this paper, we study anisotropic universes with Modified Chaplygin gas (MCG) in the context of Randall Sundrum-2 (RS2) braneworld model. The cosmological solutions for Kantowski–Sachs (KS) and Bianchi-I universes with MCG are obtained on the RS2 braneworld. The solutions are found to be dependent on MCG parameters but are modified from the GR solutions due to the braneworld correction term arising from high-energy effects. The anisotropy and deceleration parameters are obtained for each solution and the possibility of occurrence of future singularities is considered. Interestingly, we find that one drawback of the relativistic picture can be overcome in this model giving a universe close to the presently observed state.


2021 ◽  
Vol 53 (7) ◽  
Author(s):  
Luis O. Pimentel ◽  
Flavio Pineda
Keyword(s):  

2021 ◽  
Vol 103 (12) ◽  
Author(s):  
Flavio Bombacigno ◽  
Simon Boudet ◽  
Gonzalo J. Olmo ◽  
Giovanni Montani

2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Genly Leon ◽  
Sebastián Cuéllar ◽  
Esteban González ◽  
Samuel Lepe ◽  
Claudio Michea ◽  
...  

AbstractScalar field cosmologies with a generalized harmonic potential and a matter fluid with a barotropic equation of state (EoS) with barotropic index $$\gamma $$ γ for the locally rotationally symmetric (LRS) Bianchi I and flat Friedmann–Lemaître–Robertson–Walker (FLRW) metrics are investigated. Methods from the theory of averaging of nonlinear dynamical systems are used to prove that time-dependent systems and their corresponding time-averaged versions have the same late-time dynamics. Therefore, the simplest time-averaged system determines the future asymptotic behavior. Depending on the values of $$\gamma $$ γ , the late-time attractors of physical interests are flat quintessence dominated FLRW universe and Einstein-de Sitter solution. With this approach, the oscillations entering the system through the Klein–Gordon (KG) equation can be controlled and smoothed out as the Hubble parameter H – acting as time-dependent perturbation parameter – tends monotonically to zero. Numerical simulations are presented as evidence of such behavior.


Sign in / Sign up

Export Citation Format

Share Document