The vector potential of flow line and nonimaging optics (Conference Presentation)

Author(s):  
Lun Jiang ◽  
Roland Winston ◽  
Ángel G. Botella
2009 ◽  
Vol 14 (02) ◽  
Author(s):  
D. de la Fuente ◽  
M.J. Pardo
Keyword(s):  

Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 456
Author(s):  
Dongsheng Qian ◽  
Chengfei Ma ◽  
Feng Wang

Hot rolling is an essential process for the shape-forming of bearing steel. It plays a significant role in the formation and distribution of flow lines. In this work, the effect of flow lines is investigated by analyzing the microstructure and mechanical anisotropy of hot-rolled bearing steel. It was found that carbides rich with Cr and Mn elements are distributed unevenly along the flow-line direction of the hot-rolled bearing steel. Moreover, the mechanical characterization indicates that ultimate tensile strength and yield strength do not have any significant difference in two directions. Nevertheless, an ultrahigh section shrinkage of 57.51% is obtained in the 0° sample that has parallel flow lines, while 90° sample shows poor section shrinkage. The uneven distributed carbides will affect the direction and speed of crack propagation during tensile deformation. Therefore, the 0° and 90° samples exhibit great difference in plastic property. Meanwhile, after tensile deformation, a delaminated texture is observed in the flow lines, which may be caused by different degrees of deformation of grains due to the uneven distribution of carbides. The results of this work may provide guidance for controlling and optimizing flow lines in the manufacturing of bearing rings.


2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Tan Chan Sin ◽  
Ryspek Usubamatov ◽  
M. A. Fairuz ◽  
Mohd Fidzwan B. Md. Amin Hamzas ◽  
Low Kin Wai

Productivity rate (Q) or production rate is one of the important indicator criteria for industrial engineer to improve the system and finish good output in production or assembly line. Mathematical and statistical analysis method is required to be applied for productivity rate in industry visual overviews of the failure factors and further improvement within the production line especially for automated flow line since it is complicated. Mathematical model of productivity rate in linear arrangement serial structure automated flow line with different failure rate and bottleneck machining time parameters becomes the basic model for this productivity analysis. This paper presents the engineering mathematical analysis method which is applied in an automotive company which possesses automated flow assembly line in final assembly line to produce motorcycle in Malaysia. DCAS engineering and mathematical analysis method that consists of four stages known as data collection, calculation and comparison, analysis, and sustainable improvement is used to analyze productivity in automated flow assembly line based on particular mathematical model. Variety of failure rate that causes loss of productivity and bottleneck machining time is shown specifically in mathematic figure and presents the sustainable solution for productivity improvement for this final assembly automated flow line.


Sign in / Sign up

Export Citation Format

Share Document