scholarly journals Engineering Mathematical Analysis Method for Productivity Rate in Linear Arrangement Serial Structure Automated Flow Assembly Line

2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Tan Chan Sin ◽  
Ryspek Usubamatov ◽  
M. A. Fairuz ◽  
Mohd Fidzwan B. Md. Amin Hamzas ◽  
Low Kin Wai

Productivity rate (Q) or production rate is one of the important indicator criteria for industrial engineer to improve the system and finish good output in production or assembly line. Mathematical and statistical analysis method is required to be applied for productivity rate in industry visual overviews of the failure factors and further improvement within the production line especially for automated flow line since it is complicated. Mathematical model of productivity rate in linear arrangement serial structure automated flow line with different failure rate and bottleneck machining time parameters becomes the basic model for this productivity analysis. This paper presents the engineering mathematical analysis method which is applied in an automotive company which possesses automated flow assembly line in final assembly line to produce motorcycle in Malaysia. DCAS engineering and mathematical analysis method that consists of four stages known as data collection, calculation and comparison, analysis, and sustainable improvement is used to analyze productivity in automated flow assembly line based on particular mathematical model. Variety of failure rate that causes loss of productivity and bottleneck machining time is shown specifically in mathematic figure and presents the sustainable solution for productivity improvement for this final assembly automated flow line.

2014 ◽  
Vol 34 (1) ◽  
pp. 34-40 ◽  
Author(s):  
Ryspek Usubamatov ◽  
Abd Alsalam Alsalameh ◽  
Rosmaini Ahmad ◽  
Abdul Rahman Riza

Purpose – The paper aims to study car assembly line, to show its productivity rate, and to derive a mathematical model for the productivity rate of the assembly line segmented into sections with embedded buffers. Design/methodology/approach – The paper performs productivity calculations based on data obtained from the assembly processes of a car and shows the maximum productivity of the assembly line. The equations of the assembly line productivity, the optimal number of assembly stations, and the necessary number of the assembly line's sections with buffers are derived via the criterion of maximum productivity. Findings – The paper provides the productivity diagram of the assembly line that illustrates various measures of productivity, one that depends on the number of assembly stations, the number of sections in the line, and the capacity of the buffers. The diagram is based on the proposed mathematical equations for the productivity of the assembly line as a function of the assembly technology, number of stations, number of sections, and the capacity of the buffer. Research limitations/implications – Solutions towards increasing the productivity of the assembly line are given based on the results of the study and analysis of the assembly processes in real industrial environments. Practical implications – The paper includes the equation for the productivity of the assembly line, which is segmented into sections with limited capacity of the buffers, thereby enabling the calculation of its maximum productivity and the optimal number of assembly stations. Originality/value – The paper presents an analysis of productivity and a mathematical model for calculating the productivity of the assembly line, which is segmented into sections with embedded buffers of limited capacity. The initial results of the research have been obtained from a real industrial environment.


Author(s):  
P. P. Semenyuk ◽  
R. E. Velikotsky ◽  
N. A. Rumyantseva

The problem of influence of sinter production technological factors on silicon content and particularly variations of Si (ΔSi) in hot metal is actual for the up-to-date metallurgy.Traditional methods and plans of studies of BF heat running at present are considered less precise and effective comparing with up-to-date methods of mathematical and computer simulation, since the last provide an ability to forecast and optimize numerous parameters of BF process.A complex mathematical analysis of dependence between hot blast temperature and ΔSi by application of the universal mathematical model, specially elaborated and adapted for industrial conditions of sinter plant operation of Alchevsk steel-works was the task of the study.Influence of hot blast temperature (X-Factory) on minimization of ΔSi (Y-Factory) studied. Complex mathematical analysis was carried out using statistical data collected during 65 months of Alchevsk steel-works blast furnace of 3000 m3 operation. Results of calculation of influence of hot blast temperature on ΔSi by application of the universal mathematical model presented. Minimization of ΔSi when optimizing hot blast temperature reached. Accuracy of calculation using the elaborated model was more 99% of actual operational statistic.


2015 ◽  
Vol 789-790 ◽  
pp. 1270-1274
Author(s):  
Janjira Kongchuenjai ◽  
Suksan Prombanpong

One of the objectives of process planning optimization is to diminish machining time. Nowadays a lot of research papers presented different algorithms to solve this classic problem. Thus, the optimal sequence of parts in the machining operations by considering fixture faces, part faces, number of operations and number of tools is presented in this paper. The mathematical model based on the integer linear programming is developed to minimize the total production time of the prismatic parts manufactured on a CNC machining center equipped with the tombstone-type fixture. The time required for machining, tool traveling and tool changing is taken into consideration under relevant constraints such as precedence, fixture and available cutting tools. The optimal process plan can be obtained from the mathematical model and it is considered practical and acceptable.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1024 ◽  
Author(s):  
Mikhail Kolev

A new mathematical model of a general autoimmune disease is presented. Basic information about autoimmune diseases is given and illustrated with examples. The model is developed by using ideas from the kinetic theory describing individuals expressing certain functions. The modeled problem is formulated by ordinary and partial equations involving a variable for a functional state. Numerical results are presented and discussed from a medical view point.


1996 ◽  
Vol 42 (7) ◽  
pp. 1074-1078 ◽  
Author(s):  
J E Vaks

Abstract Linearity, interference evaluations of the performance of clinical chemistry systems, mathematical model selection for nonlinear calibration, and other assessments often involve several human sample pools with equally spaced analyte concentrations. Sequential mixing of equal volumes, first of the low and high pools to produce the middle pool, then of the low and middle pools to produce the mid-low pool, and of the high and middle pools to produce the mid-high pool, is recommended in the NCCLS EP7-P guideline for interference studies. Proportional mixing of the low and high pools to produce all of the required pool concentrations is recommended in the NCCLS EP6-P guideline for linearity studies. Mathematical analysis and computer simulation show that the sequential mixing is much more accurate and precise than the proportional mixing. Therefore, we recommend sequential mixing for clinical chemistry application.


2019 ◽  
Vol 135 ◽  
pp. 01056
Author(s):  
Yuri Skolubovich ◽  
Alexey Skolubovich ◽  
Dmitry Volkov ◽  
Tamara Krasnova ◽  
Elena Gogina

This article describes the use of the stochastic approach, in particular, mass service theory and the development of its methods, adapted directly to the coagulation process as a mathematical tool. The coagulation process will be concerned as a) supplying water to the mixer, b) processing it with reagents (coagulants), c) settling for the mathematical analysis of water clarification effectiveness.


2018 ◽  
Vol 175 ◽  
pp. 03014
Author(s):  
Xin-jian Li ◽  
Jun Yang ◽  
Bing-qiang Yan ◽  
Xiao Zheng

A mathematical model of electrified insulated cable was established to calculate temperature of insulating layer. The insulating layer temperature is determined as a function of the current intensity, time, insulation layer thickness, etc. A widely used polyvinyl chloride (PVC) cable with sectional area of 4 mm2 was selected as example and its insulating layer temperature was simulated using ANSYS. The simulation revealed the evolution of insulating layer temperature with time, and also along radius after a certain time when the cable was applied with 40A and 60A constant current respectively. The analysis method has practical significance to prevent electrical fire and can be applied to analyze spontaneous combustion accident of insulated cable.


Sign in / Sign up

Export Citation Format

Share Document