EUV sensitization mechanisms of carboxylic acids used as ligands of metal oxide nanocluster resists (Conference Presentation)

2020 ◽  
Author(s):  
Takahiro Kozawa ◽  
Yusa Muroya
Keyword(s):  
2019 ◽  
Vol 58 (9) ◽  
pp. 096504
Author(s):  
Teppei Yamada ◽  
Yusa Muroya ◽  
Shinichi Yamashita ◽  
Yoshitaka Komuro ◽  
Daisuke Kawana ◽  
...  

2021 ◽  
Author(s):  
Loren Deblock ◽  
Rohan Pokratath ◽  
Klaartje De Buysser ◽  
Jonathan De Roo

Iron oxide and hafnium oxide nanocrystals are two of the few successful examples of inorganic nanocrystals used in a clinical setting. Although crucial to their application, their aqueous surface chemistry is not fully understood. The literature contains conflicting reports regarding the optimum binding group. To alleviate these inconsistencies, we set out to systematically investigate the interaction of carboxylic acids, phosphonic acids and catechols to metal oxide nanocrystals in polar media. Using Nuclear Magnetic Resonance spectroscopy and Dynamic Light Scattering, we map out the pH-dependent binding affinity of the ligands towards hafnium oxide nanocrystals (an NMR compatible model system). Carboxylic acids easily desorb in water from the surface and only provide limited colloidal stability from pH 2 – 6. Phosphonic acids on the other hand provide colloidal stability over a broader pH range but also feature a pH-dependent desorption from the surface. They are most suited for acidic to neutral environments (pH < 8). Finally, nitrocatechol derivatives provide a tightly bound ligand shell and colloidal stability at physiological and basic pH (6-10). While dynamically bound ligands (carboxylates and phosphonates) do not provide colloidal stability in phosphate buffered saline, the tightly bound nitrocatechols provide long term stability. We thus shed light on the complex ligand binding dynamics on metal oxide nanocrystals in aqueous environments. Finally, we provide a practical colloidal stability map, guiding researchers to rationally design ligands for their desired application.


Author(s):  
Tomoe Otsuka ◽  
Yusa Muroya ◽  
Takuya Ikeda ◽  
Yoshitaka Komuro ◽  
Daisuke Kawana ◽  
...  

Abstract Metal oxide nanocluster resists have recently attracted considerable attention for use in extreme ultraviolet (EUV) lithography. To obtain sophisticated guidelines for material design, it is necessary to understand well the radiation-induced chemical reaction scheme including the insolubilization mechanism. In this study, the production of CO2, which is considered to be one of the end products of treatment with an ionizing radiation, was investigated for eight types of carboxylic acid under various conditions using -rays (60Co) as a radiation source. The amount of CO2 produced was measured by gas chromatography (GC). GCO2 (/100 eV), which indicates decarboxylation efficiency, was evaluated. CO2 was generated through electron addition, hole transfer, and hydroxyl radical addition to the molecular and ionic forms of carboxylic acids. The dependences of GCO2 on reaction partners were clarified. The dependences of GCO2 on the molecular structure and dissociative state of carboxylic acids were also clarified.


Author(s):  
R.A. Ploc

The manner in which ZrO2 forms on zirconium at 300°C in air has been discussed in the first reference. In short, monoclinic zirconia nucleates and grows with a preferred orientation relative to the metal substrate. The mode of growth is not well understood since an epitaxial relationship which gives minimum misfit between the zirconium ions in the metal/oxide combination is not realized. The reason may be associated with a thin cubic or tetragonal layer of ZrO2 between the inner oxygen saturated metal and the outer monoclinic zirconia.


Nanoscale ◽  
2020 ◽  
Vol 12 (15) ◽  
pp. 8065-8094 ◽  
Author(s):  
Xudong Wen ◽  
Jingqi Guan

Different kinds of electrocatalysts used in NRR electrocatalysis (including single atom catalysts, metal oxide catalysts, nanocomposite catalysts, and metal free catalysts) are introduced.


1999 ◽  
Vol 09 (PR8) ◽  
pp. Pr8-65-Pr8-72 ◽  
Author(s):  
A. E. Turgambaeva ◽  
V. V. Krisyuk ◽  
A. F. Bykov ◽  
I. K. Igumenov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document