Toward an imaging capability with the Southern Connecticut Stellar Interferometer

Author(s):  
Paul klaucke ◽  
Richard Pellegrino ◽  
Samuel Weiss ◽  
Elliott Horch
Author(s):  
Deepak Goyal

Abstract Next generation assembly/package development challenges are primarily increased interconnect complexity and density with ever shorter development time. The results of this trend present some distinct challenges for the analytical tools/techniques to support this technical roadmap. The key challenge in the analytical tools/techniques is the development of non-destructive imaging for improved time to information. This paper will present the key drivers for the non-destructive imaging, results of literature search and evaluation of key analytical techniques currently available. Based on these studies requirements of a 3D imaging capability will be discussed. Critical breakthroughs required for development of such a capability are also summarized.


1992 ◽  
Vol 135 ◽  
pp. 521-526
Author(s):  
John Davis

AbstractThe Sydney University Stellar Interferometer (SUSI) is currently undergoing commissioning and will soon commence its astronomical program in which observations of double stars will form a major component. With its 640-m long North–South array of input siderostats, the new instrument will have unprecedented angular resolution.


2002 ◽  
Vol 17 (12n13) ◽  
pp. 1799-1808 ◽  
Author(s):  
MARCO TAVANI

Gamma-ray astrophysics in the energy range between 30 MeV and 30 GeV is in desperate need of arcminute angular resolution and source monitoring capability. The AGILE Mission planned to be operational in 2004-2006 will be the only space mission entirely dedicated to gamma-ray astrophysics above 30 MeV. The main characteristics of AGILE are the simultaneous X-ray and gamma-ray imaging capability (reaching arcminute resolution) and excellent gamma-ray timing (10-100 microseconds). AGILE scientific program will emphasize a quick response to gamma-ray transients and multiwavelength studies of gamma-ray sources.


2004 ◽  
Vol 75 (1) ◽  
pp. 266-269 ◽  
Author(s):  
Henry Hess ◽  
Meher Antia ◽  
Viola Vogel

2007 ◽  
Vol 15 (2) ◽  
pp. 26-31 ◽  
Author(s):  
Ben Lich

DualBeam instruments that combine the imaging capability of scanning electron microscopy (SEM) with the cutting and deposition capability of a focused ion beam (FIB) provide biologists with a powerful tool for investigating three-dimensional structure with nanoscale (1 nm-100 nm) resolution. Ever since Van Leeuwenhoek used the first microscope to describe bacteria more than 300 years ago, microscopy has played a central role in scientists' efforts to understand biological systems. Light microscopy is generally limited to a useful resolution of about a micrometer. More recently the use of confocal and electron microscopy has enabled investigations at higher resolution. Used with fluorescent markers, confocal microscopy can detect and localize molecular scale features, but its imaging resolution is still limited. SEM is capable of nanometer resolution, but is limited to the near surface region of the sample.


1998 ◽  
Author(s):  
Irene L. Porro ◽  
Wesley A. Traub ◽  
Nathaniel P. Carleton

Sign in / Sign up

Export Citation Format

Share Document