Integer lattice method for generation of (quasi-)periodic optical coherent lattices

Author(s):  
Dmitry Kouznetsov ◽  
Qingzhong Deng ◽  
Ongun Arisev ◽  
Andim Stassen ◽  
Pol Van Dorpe ◽  
...  
2002 ◽  
Vol 721 ◽  
Author(s):  
Monica Sorescu

AbstractWe propose a two-lattice method for direct determination of the recoilless fraction using a single room-temperature transmission Mössbauer measurement. The method is first demonstrated for the case of iron and metallic glass two-foil system and is next generalized for the case of physical mixtures of two powders. We further apply this method to determine the recoilless fraction of hematite and magnetite particles. Finally, we provide direct measurement of the recoilless fraction in nanohematite and nanomagnetite with an average particle size of 19 nm.


AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 1230-1233
Author(s):  
Paulo A. O. Soviero ◽  
Hugo B. Resende

2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Sen Mao ◽  
Changchuan Xie ◽  
Lan Yang ◽  
Chao Yang

A morphing trailing-edge (TE) wing is an important morphing mode in aircraft design. In order to explore the static aeroelastic characteristics of a morphing TE wing, an efficient and feasible method for static aeroelastic analysis has been developed in this paper. A geometrically exact vortex lattice method (VLM) is applied to calculate the aerodynamic forces. Firstly, a typical model of a morphing TE wing is chosen and built which has an active morphing trailing edge driven by a piezoelectric patch. Then, the paper carries out the static aeroelastic analysis of the morphing TE wing and corresponding simulations were carried out. Finally, the analysis results are compared with those of a traditional wing with a rigid trailing edge using the traditional linearized VLM. The results indicate that the geometrically exact VLM can better describe the aerodynamic nonlinearity of a morphing TE wing in consideration of geometrical deformation in aeroelastic analysis. Moreover, out of consideration of the angle of attack, the deflection angle of the trailing edge, among others, the wing system does not show divergence but bifurcation. Consequently, the aeroelastic analysis method proposed in this paper is more applicable to the analysis and design of a morphing TE wing.


2007 ◽  
Vol 155 (11) ◽  
pp. 1384-1394 ◽  
Author(s):  
Peter Hamburger ◽  
Robert Vandell ◽  
Matt Walsh
Keyword(s):  

2004 ◽  
Vol 14 (08) ◽  
pp. 2655-2665 ◽  
Author(s):  
LARRY TURYN

We consider a Cellular Neural Network (CNN), with a bias term, on the integer lattice ℤ2in the plane ℝ2. Space-dependent, asymmetric couplings (templates) appropriate for CNN in the hexagonal lattice on ℝ2are studied. We characterize the mosaic patterns and study their spatial entropy. It appears that for this problem, asymmetry of the template has a more robust effect on the spatial entropy than does the sign of a parameter in the templates.


2021 ◽  
Author(s):  
Spyros A. Kinnas ◽  
Kyungjung Cha ◽  
Seungnam Kim

A comprehensive method which determines the most efficient propeller blade shapes for a given axisymmetric hull to travel at a desired speed, is presented. A nonlinear optimization method is used to design the blade, the shape of which is defined by a 3-D B-spline polygon, with the coordinates of the B-spline control points being the parameters to be optimized for maximum propeller efficiency, for given effective wake and propeller thrust. The performance of the propeller within the optimization scheme is assessed by a vortex-lattice method (VLM). To account fully for the hull/propeller interaction, the effective wake to the propeller and the hull resistance are determined by analyzing the designed propeller geometry by the VLM, coupled with a Reynolds-Averaged Navier-Stokes (RANS) solver. The optimization method re-designs the optimum blade with the updated effective wake and propeller thrust (taken to be equal to the updated hull resistance), and the procedure continues until convergence of the propeller performance. The current approach does not require knowledge of the wake fraction or the thrust deduction factor, both of which must be estimated a priori in traditional propeller design. The method is applied for a given hull to travel at a desired speed, and the optimum blades are designed for various combinations of propeller diameter and RPM, in the case of open and ducted propellers with provided duct shapes. The effects of the propeller diameter and RPM on the designed propeller thrust, torque, propeller efficiency, and required power are presented and compared with each other in the case of open and ducted propellers. The present approach is shown to provide guidance on the design of propulsors for underwater vehicles, and is applicable to the design of propulsors for surface ships.


2009 ◽  
Author(s):  
Spyros A. Kinnas ◽  
Shu-Hao Chang ◽  
Yi-Hsiang Yu ◽  
Lei He

This paper presents the analysis of the performance for podded and ducted propellers using a hybrid numerical method, which couples a vortex lattice method (MPUF-3A) for the unsteady analysis of propellers and a viscous flow solver (NS-3X or FLUENT) for the prediction of the viscous flow around propulsors and the drag force on the pod and duct surfaces. The time averaged propeller force distributions are considered as source terms (body force) in the momentum equations of NS-3X and FLUENT. The effects of viscosity on the effective wake and on the performance of the propeller blade, as well as on the predicted pod and duct forces, are assessed. The convergence study of circulation distributions with number of lattices is reported in the ducted propeller case. Finally, the prediction of the performance for podded propellers (both single pull-type and twin-type) and ducted propellers from the present method is validated against existing experimental data.


Sign in / Sign up

Export Citation Format

Share Document