Effect of the short time fourier transform on the classification of complex-valued mobile signals

Author(s):  
Logan Smith ◽  
Nicolas Smith ◽  
Surya Kodipaka ◽  
Ajaya Dahal ◽  
Bo Tang ◽  
...  
2018 ◽  
Vol 1 (2) ◽  
pp. 1-8 ◽  
Author(s):  
Ashraf Adamu Ahmad ◽  
A. S. Saliu ◽  
Abel E. Airoboman ◽  
U. M. Mahmud ◽  
S. L. Abdullahi

With modern advances in radar technologies and increased complexity in aerial battle, there is need for knowledge acquisition on the abilities and operating characteristics of intercepted hostile systems. The required knowledge obtained through advanced signal processing is necessary for either real time-warning or in order to determine Electronic Order of Battle (EOB) of these systems. An algorithm was therefore developed in this paper based on a joint Time-Frequency Distribution (TFD) in order to identify the time-frequency agility of radar signals based on its changing pulse characteristics. The joint TFD used in this paper was the square magnitude of the Short-Time Fourier Transform (STFT), where power and frequency obtained at instants of time from its Time-Frequency Representation (TFR) was used to estimate the time and frequency parameters of the radar signals respectively. Identification was thereafter done through classification of the signals using a rule-based classifier formed from the estimated time and frequency parameters. The signals considered in this paper were the simple pulsed, pulse repetition interval modulated, frequency hopping and the agile pulsed radar signals, which represent cases of various forms of agility associated with modern radar technologies. Classification accuracy was verified using the Monte Carlo simulation performed at various ranges of Signal-to-Noise Ratios (SNRs) in the presence of noise modelled by the Additive White Gaussian Noise (AWGN). Results obtained showed identification accuracy of 99% irrespective of the signal at a minimum SNR of 0dB where signal and noise power were the same. The obtained minimum SNR at this classification accuracy showed that the developed algorithm can be deployed practically in the electronic warfare field for accurate agility classification of airborne radar signals.


2021 ◽  
Vol 11 (6) ◽  
pp. 2582
Author(s):  
Lucas M. Martinho ◽  
Alan C. Kubrusly ◽  
Nicolás Pérez ◽  
Jean Pierre von der Weid

The focused signal obtained by the time-reversal or the cross-correlation techniques of ultrasonic guided waves in plates changes when the medium is subject to strain, which can be used to monitor the medium strain level. In this paper, the sensitivity to strain of cross-correlated signals is enhanced by a post-processing filtering procedure aiming to preserve only strain-sensitive spectrum components. Two different strategies were adopted, based on the phase of either the Fourier transform or the short-time Fourier transform. Both use prior knowledge of the system impulse response at some strain level. The technique was evaluated in an aluminum plate, effectively providing up to twice higher sensitivity to strain. The sensitivity increase depends on a phase threshold parameter used in the filtering process. Its performance was assessed based on the sensitivity gain, the loss of energy concentration capability, and the value of the foreknown strain. Signals synthesized with the time–frequency representation, through the short-time Fourier transform, provided a better tradeoff between sensitivity gain and loss of energy concentration.


2021 ◽  
Vol 113 (1-2) ◽  
pp. 585-603
Author(s):  
Wenderson N. Lopes ◽  
Pedro O. C. Junior ◽  
Paulo R. Aguiar ◽  
Felipe A. Alexandre ◽  
Fábio R. L. Dotto ◽  
...  

Author(s):  
Rahul Balamurugan ◽  
Fatima Al-Janahi ◽  
Oumaima Bouhali ◽  
Sawsan Shukri ◽  
Kais Abdulmawjood ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document