Classification of mitral stenosis from Doppler signals using short time Fourier transform and artificial neural networks

2007 ◽  
Vol 33 (2) ◽  
pp. 468-475 ◽  
Author(s):  
Sadık Kara
2003 ◽  
Vol 57 (1) ◽  
pp. 14-22 ◽  
Author(s):  
Lin Zhang ◽  
Gary W. Small ◽  
Abigail S. Haka ◽  
Linda H. Kidder ◽  
E. Neil Lewis

Cluster analysis and artificial neural networks (ANNs) are applied to the automated assessment of disease state in Fourier transform infrared microscopic imaging measurements of normal and carcinomatous immortalized human breast cell lines. K-means clustering is used to implement an automated algorithm for the assignment of pixels in the image to cell and non-cell categories. Cell pixels are subsequently classified into carcinoma and normal categories through the use of a feed-forward ANN computed with the Broyden–Fletcher–Goldfarb–Shanno training algorithm. Inputs to the ANN consist of principal component scores computed from Fourier filtered absorbance data. A grid search optimization procedure is used to identify the optimal network architecture and filter frequency response. Data from three images corresponding to normal cells, carcinoma cells, and a mixture of normal and carcinoma cells are used to build and test the classification methodology. A successful classifier is developed through this work, although differences in the spectral backgrounds between the three images are observed to complicate the classification problem. The robustness of the final classifier is improved through the use of a rejection threshold procedure to prevent classification of outlying pixels.


2021 ◽  
Vol 23 ◽  
pp. 100313
Author(s):  
Nicholas A. Thurn ◽  
Taylor Wood ◽  
Mary R. Williams ◽  
Michael E. Sigman

2017 ◽  
Vol 70 (4) ◽  
pp. 492-498 ◽  
Author(s):  
Leandro S Santos ◽  
Roberta M D Cardozo ◽  
Natália Moreiria Nunes ◽  
Andréia B Inácio ◽  
Ana Clarissa dos S Pires ◽  
...  

2006 ◽  
Vol 41 (3) ◽  
pp. 257-263 ◽  
Author(s):  
Robespierre Santos ◽  
Horst G. Haack ◽  
Des Maddalena ◽  
Ross D. Hansen ◽  
John E. Kellow

2016 ◽  
Vol 19 (1) ◽  
pp. 49-59 ◽  
Author(s):  
Nina Pavlin-Bernardić ◽  
◽  
Silvija Ravić ◽  
Ivan Pavao Matić ◽  
◽  
...  

Artificial neural networks have a wide use in the prediction and classification of different variables, but their application in the area of educational psychology is still relatively rare. The aim of this study was to examine the accuracy of artificial neural networks in predicting students’ general giftedness. The participants were 221 fourth grade students from one Croatian elementary school. The input variables for artificial neural networks were teachers’ and peers’ nominations, school grades, earlier school readiness assessment and parents’ education. The output variable was the result on the Standard Progressive Matrices (Raven, 1994), according to which students were classified as gifted or non-gifted. We tested two artificial neural networks’ algorithms: multilayer perceptron and radial basis function. Within each algorithm, a number of different types of activation functions were tested. 80% of the sample was used for training the network and the remaining 20% to test the network. For a criterion according to which students were classified as gifted if their result on the Standard Progressive Matrices was in the 95th centile or above, the best model was obtained by the hyperbolic tangent multilayer perceptron, which had a high accuracy of 100% of correctly classified non-gifted students and 75% correctly classified gifted students in the test sample. When the criterion was the 90th centile or above, the best model was also obtained by the hyperbolic tangent multilayer perceptron, but the accuracy was lower: 94.7% in the classification of non-gifted students and 66.7% in the classification of gifted students. The study has shown artificial neural networks’ potential in this area, which should be further explored. Keywords: gifted students, identification of gifted students, artificial neural networks


Sign in / Sign up

Export Citation Format

Share Document