multicomponent signal
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 10)

H-INDEX

12
(FIVE YEARS 2)

Author(s):  
Bridget M. Waller ◽  
Eithne Kavanagh ◽  
Jerome Micheletta ◽  
Peter R. Clark ◽  
Jamie Whitehouse

AbstractA wealth of experimental and observational evidence suggests that faces have become increasingly important in the communication system of primates over evolutionary time and that both the static and moveable aspects of faces convey considerable information. Therefore, whenever there is a visual component to any multicomponent signal the face is potentially relevant. However, the role of the face is not always considered in primate multicomponent communication research. We review the literature and make a case for greater focus on the face going forward. We propose that the face can be overlooked for two main reasons: first, due to methodological difficulty. Examination of multicomponent signals in primates is difficult, so scientists tend to examine a limited number of signals in combination. Detailed examination of the subtle and dynamic components of facial signals is particularly hard to achieve in studies of primates. Second, due to a common assumption that the face contains “emotional” content. A priori categorisation of facial behavior as “emotional” ignores the potentially communicative and predictive information present in the face that might contribute to signals. In short, we argue that the face is central to multicomponent signals (and also many multimodal signals) and suggest future directions for investigating this phenomenon.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2170
Author(s):  
Vittoria Bruni ◽  
Michela Tartaglione ◽  
Domenico Vitulano

Frequency modulated signals appear in many applied disciplines, including geology, communication, biology and acoustics. They are naturally multicomponent, i.e., they consist of multiple waveforms, with specific time-dependent frequency (instantaneous frequency). In most practical applications, the number of modes—which is unknown—is needed for correctly analyzing a signal; for instance for separating each individual component and for estimating its instantaneous frequency. Detecting the number of components is a challenging problem, especially in the case of interfering modes. The Rényi Entropy-based approach has proven to be suitable for signal modes counting, but it is limited to well separated components. This paper addresses this issue by introducing a new notion of signal complexity. Specifically, the spectrogram of a multicomponent signal is seen as a non-stationary process where interference alternates with non-interference. Complexity concerning the transition between consecutive spectrogram sections is evaluated by means of a modified Run Length Encoding. Based on a spectrogram time-frequency evolution law, complexity variations are studied for accurately estimating the number of components. The presented method is suitable for multicomponent signals with non-separable modes, as well as time-varying amplitudes, showing robustness to noise.


Geophysics ◽  
2020 ◽  
Vol 85 (2) ◽  
pp. V143-V156
Author(s):  
Qiang Zhao ◽  
Qizhen Du ◽  
Qamar Yasin ◽  
Qingqing Li ◽  
Liyun Fu

Multicomponent noise attenuation often presents more severe processing challenges than scalar data owing to the uncorrelated random noise in each component. Meanwhile, weak signals merged in the noise are easier to degrade using the scalar processing workflows while ignoring their possible supplement from other components. For seismic data preprocessing, transform-based approaches have achieved improved performance on mitigating noise while preserving the signal of interest, especially when using an adaptive basis trained by dictionary-learning methods. We have developed a quaternion-based sparse tight frame (QSTF) with the help of quaternion matrix and tight frame analyses, which can be used to process the vector-valued multicomponent data by following a vectorial processing workflow. The QSTF is conveniently trained through iterative sparsity-based regularization and quaternion singular-value decomposition. In the quaternion-based sparse domain, multicomponent signals are orthogonally represented, which preserve the nonlinear relationships among multicomponent data to a greater extent as compared with the scalar approaches. We test the performance of our method on synthetic and field multicomponent data, in which component-wise, concatenated, and long-vector models of multicomponent data are used as comparisons. Our results indicate that more features, specifically the weak signals merged in the noise, are better recovered using our method than others.


Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 358 ◽  
Author(s):  
Vittoria Bruni ◽  
Michela Tartaglione ◽  
Domenico Vitulano

The improvement of the readability of time-frequency transforms is an important topic in the field of fast-oscillating signal processing. The reassignment method is often used due to its adaptivity to different transforms and nice formal properties. However, it strongly depends on the selection of the analysis window and it requires the computation of the same transform using three different but well-defined windows. The aim of this work is to provide a simple method for spectrogram reassignment, named FIRST (Fast Iterative and Robust Reassignment Thinning), with comparable or better precision than classical reassignment method, a reduced computational effort, and a near independence of the adopted analysis window. To this aim, the time-frequency evolution of a multicomponent signal is formally provided and, based on this law, only a subset of time-frequency points is used to improve spectrogram readability. Those points are the ones less influenced by interfering components. Preliminary results show that the proposed method can efficiently reassign spectrograms more accurately than the classical method in the case of interfering signal components, with a significant gain in terms of required computational effort.


2019 ◽  
Vol 531 (3) ◽  
pp. 1800290 ◽  
Author(s):  
Theo Steininger ◽  
Jait Dixit ◽  
Philipp Frank ◽  
Maksim Greiner ◽  
Sebastian Hutschenreuter ◽  
...  

2019 ◽  
Vol 115 ◽  
pp. 720-735 ◽  
Author(s):  
Xiangxiang Zhu ◽  
Zhuosheng Zhang ◽  
Jinghuai Gao ◽  
Wenting Li

Sign in / Sign up

Export Citation Format

Share Document