2D filter design for coding artifacts reduction using structural similarity as a metric

Author(s):  
Kodai Ogawa ◽  
Yusuke Kameda ◽  
Yasuyo Kita ◽  
Ichiro Matsuda ◽  
Itoh Susumu
Author(s):  
G. Kasnic ◽  
S. E. Stewart ◽  
C. Urbanski

We have reported the maturation of an intracisternal A-type particle in murine plasma cell tumor cultures and three human tumor cell cultures (rhabdomyosarcoma, lung adenocarcinoma, and osteogenic sarcoma) after IUDR-DMSO activation. In all of these studies the A-type particle seems to develop into a form with an electron dense nucleoid, presumably mature, which is also intracisternal. A similar intracisternal A-type particle has been described in leukemic guinea pigs. Although no biological activity has yet been demonstrated for these particles, on morphologic grounds, and by the manner in which they develop within the cell, they may represent members of the same family of viruses.


Author(s):  
M. Boublik ◽  
R.M. Wydro ◽  
W. Hellmann ◽  
F. Jenkins

Ribosomes are ribonucleoprotein particles necessary for processing the genetic information of mRNA into proteins. Analogy in composition and function of ribosomes from diverse species, established by biochemical and biological assays, implies their structural similarity. Direct evidence obtained by electron microscopy seems to be of increasing relevance in understanding the structure of ribosomes and the mechanism of their role in protein synthesis.The extent of the structural homology between prokaryotic and eukaryotic ribosomes has been studied on ribosomes of Escherichia coli (E.c.) and Artemia salina (A.s.). Despite the established differences in size and in the amount and proportion of ribosomal proteins and RNAs both types of ribosomes show an overall similarity. The monosomes (stained with 0.5% aqueous uranyl acetate and deposited on a fine carbon support) appear in the electron micrographs as round particles with a diameter of approximately 225Å for the 70S E.c. (Fig. 1) and 260Å for the 80S A.s. monosome (Fig. 2).


Author(s):  
M. Boublik ◽  
N. Robakis ◽  
W. Hellmann ◽  
F. Jenkins

Ribosomes are ribonucleoprotein particles which process the genetic information coded in mRNA into protein synthesis. The analogy in function and composition of ribosomes from various sources, both prokaryotic and eukaryo-tic, imply a structural similarity. At present, high resolution electron microscopy is the most direct technique with a potential to resolve the extent of the structural homology of ribosomal particles at a macromolecular level. The structure of ribosomes is highly complex as a result of the large number of their constituents. In general, 80S eukaryotic monosomes consist of two uneven subunits - large (60S) and small (40S) - accomodating four different RNAs and approximately 80 different proteins. Mutual orientation of both subunits on the monosome is of particular interest because it determines the interface, the supposed site of interactions of ribosomes with other macro-molecules involved in peptide bond formation. Since entrapping of the contrasting solution (0.5% aqueous uranyl acetate) obscures all structural details in the interface, information on its architecture is limited to an indirect reconstruction based on the established 3-D structure of both sub-units and their mutual position after association.


2019 ◽  
Vol 476 (24) ◽  
pp. 3835-3847 ◽  
Author(s):  
Aliyath Susmitha ◽  
Kesavan Madhavan Nampoothiri ◽  
Harsha Bajaj

Most Gram-positive bacteria contain a membrane-bound transpeptidase known as sortase which covalently incorporates the surface proteins on to the cell wall. The sortase-displayed protein structures are involved in cell attachment, nutrient uptake and aerial hyphae formation. Among the six classes of sortase (A–F), sortase A of S. aureus is the well-characterized housekeeping enzyme considered as an ideal drug target and a valuable biochemical reagent for protein engineering. Similar to SrtA, class E sortase in GC rich bacteria plays a housekeeping role which is not studied extensively. However, C. glutamicum ATCC 13032, an industrially important organism known for amino acid production, carries a single putative sortase (NCgl2838) gene but neither in vitro peptide cleavage activity nor biochemical characterizations have been investigated. Here, we identified that the gene is having a sortase activity and analyzed its structural similarity with Cd-SrtF. The purified enzyme showed a greater affinity toward LAXTG substrate with a calculated KM of 12 ± 1 µM, one of the highest affinities reported for this class of enzyme. Moreover, site-directed mutation studies were carried to ascertain the structure functional relationship of Cg-SrtE and all these are new findings which will enable us to perceive exciting protein engineering applications with this class of enzyme from a non-pathogenic microbe.


Sign in / Sign up

Export Citation Format

Share Document