protein engineering
Recently Published Documents


TOTAL DOCUMENTS

1946
(FIVE YEARS 343)

H-INDEX

93
(FIVE YEARS 13)

2022 ◽  
Vol 72 ◽  
pp. 145-152
Author(s):  
Brian L. Hie ◽  
Kevin K. Yang

2022 ◽  
Author(s):  
Harsimranjit Sekhon ◽  
Stewart N Loh

DNA-based devices are relatively straightforward to design by virtue of their predictable folding, but they lack biological activity. Conversely, protein-based devices offer a myriad of biological functions but are much more difficult to design due to their complex folding. This study bridges the fields of DNA engineering and protein engineering to generate a protein switch that is activated by a specific DNA sequence. A single protein switch, engineered from nanoluciferase using the alternate frame folding mechanism and herein called nLuc-AFF, is paired with different DNA technologies to create a biosensor for a DNA or RNA sequence of choice, sensors for serotonin and ATP, and a computational device that processes two DNA inputs. nLuc-AFF is a genetically-encoded, ratiometric, blue/green-luminescent biosensor whose output can be quantified by cell phone camera. nLuc-AFF is not falsely activated by decoy DNA and it retains full ratiometric readout in 100 % serum. The design approach can be applied to other proteins and enzymes to convert them into DNA-activated switches.


2022 ◽  
Vol 1 (1) ◽  
pp. 18-23
Author(s):  
David C. Miller ◽  
Soumitra V. Athavale ◽  
Frances H. Arnold
Keyword(s):  

2022 ◽  
pp. 147-158
Author(s):  
Rongming Liu ◽  
Liya Liang ◽  
Maria Priscila Lacerda ◽  
Emily F. Freed ◽  
Carrie A. Eckert

Author(s):  
Jiheon Kim ◽  
Ha Pham ◽  
Yeongjin Baek ◽  
Inseong Jo ◽  
Yong-Hak Kim ◽  
...  

The YxaL protein was isolated from the soil bacterium Bacillus velezensis and has been shown to promote the root growth of symbiotic plants. YxaL has further been suggested to act as an exogenous signaling protein to induce the growth and branching of plant roots. Amino acid sequence analysis predicted YxaL to exhibit an eight-bladed β-propeller fold stabilized by six tryptophan-docking motifs and two modified motifs. Protein engineering to improve its structural stability is needed to increase the utility of YxaL as a plant growth-promoting factor. Here, the crystal structure of YxaL from B. velezensis was determined at 1.8 Å resolution to explore its structural features for structure-based protein engineering. The structure showed the typical eight-bladed β-propeller fold with structural variations in the third and fourth blades, which may decrease the stability of the β-propeller fold. Engineered proteins targeting the modified motifs were subsequently created. Crystal structures of the engineered YxaL proteins showed that the typical tryptophan-docking interaction was restored in the third and fourth blades, with increased structural stability, resulting in improved root growth-promoting activity in Arabidopsis seeds. The work is an example of structure-based protein engineering to improve the structural stability of β-propellor fold proteins.


2021 ◽  
Author(s):  
Jenna N Meanor ◽  
Albert J Keung ◽  
Balaji M Rao

Histone post-translational modifications are small chemical changes to histone protein structure that have cascading effects on diverse cellular functions. Detecting histone modifications and characterizing their binding partners are critical steps in understanding chromatin biochemistry and have been accessed using common reagents such as antibodies, recombinant assays, and FRET based systems. High throughput platforms could accelerate work in this field, and also could be used to engineer de novo histone affinity reagents; yet published studies on their use with histones have been noticeably sparse. Here we describe specific experimental conditions that affect binding specificities of post-translationally modified histones in classic protein engineering platforms and likely explain the relative difficulty with histone targets in these platforms. We also show that manipulating avidity of binding interactions may improve specificity of binding.


Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 46
Author(s):  
Hackwon Do ◽  
Ying Wang ◽  
Chang Woo Lee ◽  
Wanki Yoo ◽  
Sangeun Jeon ◽  
...  

A gene encoding LgEstI was cloned from a bacterial fish pathogen, Lactococcus garvieae. Sequence and bioinformatic analysis revealed that LgEstI is close to the acetyl esterase family and had maximum similarity to a hydrolase (UniProt: Q5UQ83) from Acanthamoeba polyphaga mimivirus (APMV). Here, we present the results of LgEstI overexpression and purification, and its preliminary X-ray crystallographic analysis. The wild-type LgEstI protein was overexpressed in Escherichia coli, and its enzymatic activity was tested using p-nitrophenyl of varying lengths. LgEstI protein exhibited higher esterase activity toward p-nitrophenyl acetate. To better understand the mechanism underlying LgEstI activity and subject it to protein engineering, we determined the high-resolution crystal structure of LgEstI. First, the wild-type LgEstI protein was crystallized in 0.1 M Tris-HCl buffer (pH 7.1), 0.2 M calcium acetate hydrate, and 19% (w/v) PEG 3000, and the native X-ray diffraction dataset was collected up to 2.0 Å resolution. The crystal structure was successfully determined using a molecular replacement method, and structure refinement and model building are underway. The upcoming complete structural information of LgEstI may elucidate the substrate-binding mechanism and provide novel strategies for subjecting LgEstI to protein engineering.


Sign in / Sign up

Export Citation Format

Share Document