sortase a
Recently Published Documents


TOTAL DOCUMENTS

319
(FIVE YEARS 107)

H-INDEX

38
(FIVE YEARS 4)

2022 ◽  
Vol 8 ◽  
Author(s):  
Fabian Barthels ◽  
Jessica Meyr ◽  
Stefan J. Hammerschmidt ◽  
Tessa Marciniak ◽  
Hans-Joachim Räder ◽  
...  

Staphylococcus aureus is one of the most frequent causes of nosocomial and community-acquired infections, with emerging multiresistant isolates causing a significant burden to public health systems. We identified 2-sulfonylpyrimidines as a new class of potent inhibitors against S. aureus sortase A acting by covalent modification of the active site cysteine 184. Series of derivatives were synthesized to derive structure-activity relationship (SAR) with the most potent compounds displaying low micromolar KI values. Studies on the inhibition selectivity of homologous cysteine proteases showed that 2-sulfonylpyrimidines reacted efficiently with protonated cysteine residues as found in sortase A, though surprisingly, no reaction occurred with the more nucleophilic cysteine residue from imidazolinium-thiolate dyads of cathepsin-like proteases. By means of enzymatic and chemical kinetics as well as quantum chemical calculations, it could be rationalized that the SNAr reaction between protonated cysteine residues and 2-sulfonylpyrimidines proceeds in a concerted fashion, and the mechanism involves a ternary transition state with a conjugated base. Molecular docking and enzyme inhibition at variable pH values allowed us to hypothesize that in sortase A this base is represented by the catalytic histidine 120, which could be substantiated by QM model calculation with 4-methylimidazole as histidine analog.


2021 ◽  
Author(s):  
Bradley M Readnour ◽  
Yetunde A Ayinuola ◽  
Brady Russo ◽  
Zhong Liang ◽  
Vincent A Fischetti ◽  
...  

Human plasminogen (hPg)-binding M-protein (PAM), a major virulence factor of Pattern D Streptococcus pyogenes (GAS), is the primary receptor responsible for binding and activating hPg. PAM is covalently bound to the cell wall (CW) through cell membrane (CM)-resident sortase A (SrtA)-catalyzed cleavage of the PAM-proximal C-terminal LPST¯-GEAA motif present immediately upstream of its transmembrane domain (TMD), and subsequent transpeptidation to the CW. These steps expose the N-terminus of PAM to the extracellular milieu (EM) to interact with PAM ligands, e.g., hPg. Previously, we found that inactivation of SrtA showed little reduction in functional binding of PAM to hPg, indicating that PAM retained in the cell membrane (CM) by the TMD nonetheless exposed its N-terminus to the EM. In the current study, we assessed the effects of mutating the Thr4 (P1) residue of the SrtA-cleavage site in PAM (Thr355 in PAM) to delay PAM in the CM in the presence of SrtA. Using rSrtA in vitro, LPSYGEAA and LPSWGEAA peptides were shown to have low activities, while LPSTGEAA had the highest activity. Isolated CM fractions of AP53/DSrtA cells showed that LPSYGEAA and LPSWGEAA peptides were cleaved at substantially faster rates than LPSTGEAA, even in CMs with an AP53/DSrtA/PAM[T355Y] double mutation, but the transpeptidation step did not occur. These results implicate another CM-resident enzyme that cleaves LPSYGEAA and LPSWGEAA motifs, most likely LPXTGase, but cannot catalyze the transpeptidation step. We conclude that the natural P1 (Thr) of the SrtA cleavage site has evolved to dampen PAM from nonfunctional cleavage by LPXTGase.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Neda Shakour ◽  
Farzin Hadizadeh ◽  
Prashant Kesharwani ◽  
Amirhossein Sahebkar

Sortase A (SrtA) is an enzyme that catalyzes the attachment of proteins to the cell wall of Gram-positive bacterial membrane, preventing the spread of pathogenic bacterial strains. Here, one class of oxadiazole compounds was distinguished as an efficient inhibitor of SrtA via the “S. aureus Sortase A” substrate-based virtual screening. The current study on 3D-QSAR was done by utilizing preparation of the structure in the Schrödinger software suite and an assessment of 120 derivatives with the crystal structure of 1,2,4-oxadiazole which was extracted from the PDB data bank. The docking operation of the best compound in terms of pMIC ( pMIC = 2.77 ) was done to determine the drug likeliness and binding form of 1,2,4-oxadiazole derivatives as antibiotics in the active site. Using the kNN-MFA way, seven models of 3D-QSAR were created and amongst them, and one model was selected as the best. The chosen model based on q 2 (pred_ r 2 ) and R 2 values related to the sixth factor of PLS illustrates better and more acceptable external and internal predictions. Values of crossvalidation (pred_ r 2 ), validation ( q 2 ), and F were observed 0.5479, 0.6319, and 179.0, respectively, for a test group including 24 molecules and the training group including 96 molecules. The external reliability outcomes showed that the acceptable and the selective 3D-QSAR model had a high predictive potential ( R 2 = 0.9235 ) which was confirmed by the Y -randomization test. Besides, the model applicability domain was described successfully to validate the estimation of the model.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7095
Author(s):  
Galyna Volynets ◽  
Hanna Vyshniakova ◽  
Georgiana Nitulescu ◽  
George Mihai Nitulescu ◽  
Anca Ungurianu ◽  
...  

Staphylococcus aureus (S. aureus) is a causative agent of many hospital- and community-acquired infections with the tendency to develop resistance to all known antibiotics. Therefore, the development of novel antistaphylococcal agents is of urgent need. Sortase A is considered a promising molecular target for the development of antistaphylococcal agents. The main aim of this study was to identify novel sortase A inhibitors. In order to find novel antistaphylococcal agents, we performed phenotypic screening of a library containing 15512 compounds against S. aureus ATCC43300. The molecular docking of hits was performed using the DOCK program and 10 compounds were selected for in vitro enzymatic activity inhibition assay. Two inhibitors were identified, N,N-diethyl-N′-(5-nitro-2-(quinazolin-2-yl)phenyl)propane-1,3-diamine (1) and acridin-9-yl-(1H-benzoimidazol-5-yl)-amine (2), which decrease sortase A activity with IC50 values of 160.3 µM and 207.01 µM, respectively. It was found that compounds 1 and 2 possess antibacterial activity toward 29 tested multidrug resistant S. aureus strains with MIC values ranging from 78.12 to 312.5 mg/L. These compounds can be used for further structural optimization and biological research.


2021 ◽  
Vol 9 (11) ◽  
pp. 2380
Author(s):  
Ahoefa Ablavi Awussi ◽  
Emeline Roux ◽  
Catherine Humeau ◽  
Zeeshan Hafeez ◽  
Bernard Maigret ◽  
...  

Growth of the lactic acid bacterium Streptococcus thermophilus in milk depends on its capacity to hydrolyze proteins of this medium through its surface proteolytic activity. Thus, strains exhibiting the cell envelope proteinase (CEP) PrtS are able to grow in milk at high cellular density. Due to its LPNTG motif, which is possibly the substrate of the sortase A (SrtA), PrtS is anchored to the cell wall in most S. thermophilus strains. Conversely, a soluble extracellular PrtS activity has been reported in the strain 4F44. It corresponds, in fact, to a certain proportion of PrtS that is not anchored to the cell wall but rather is released in the growth medium. The main difference between PrtS of strain 4F44 (PrtS4F44) and other PrtS concerns the absence of a 32-residue imperfect duplication in the prodomain of the CEP, postulated as being required for the maturation and correct subsequent anchoring of PrtS. In fact, both mature (without the prodomain at the N-terminal extremity) and immature (with the prodomain) forms are found in the soluble PrtS4F44 form along with an intact LPNTG at their C-terminal extremity. Investigations we present in this work show that (i) the imperfect duplication is not implied in PrtS maturation; (ii) the maturase PrtM is irrelevant in PrtS maturation which is probably automaturated; and (iii) SrtA allows for the PrtS anchoring in S. thermophilus but the SrtA of strain 4F44 (SrtA4F44) displays an altered activity.


Author(s):  
Anjaly N. Vijayan ◽  
Mary Anne Refaei ◽  
Rebecca N. Silva ◽  
Pearl Tsang ◽  
Peng Zhang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document