Freeform optical elements usage in imaging optical systems design

Author(s):  
Fedor Churlyaev ◽  
Li Han Chan ◽  
Bret Engelkemier ◽  
Kurt Peterson ◽  
Vadim Vlakhko
2019 ◽  
Vol 215 ◽  
pp. 13003
Author(s):  
Sara Nagelberg ◽  
Amy Goodling ◽  
Kaushikaram Subramanian ◽  
George Barbastathis ◽  
Moritz Kreysing ◽  
...  

Micro-scale optical components play a critical role in many applications, in particular when these components are capable of dynamically responding to different stimuli with a controlled variation of their optical behavior. Here, we discuss the potential of micro-scale bi-phase emulsion droplets as a material platform for dynamic fluid optical components. Such droplets act as liquid compound micro-lenses with dynamically tunable focal lengths. They can be reconfigured to focus or scatter light and form images. In addition, we discuss how these droplets can be used to create iridescent structural color with large angular spectral separation. Experimental demonstrations of the emulsion droplet optics are complemented by theoretical analysis and wave-optical modelling. Finally, we provide evidence of the droplets utility as fluidic optical elements in potential application scenarios.


2015 ◽  
Vol 27 (4) ◽  
pp. 3-3
Author(s):  
Nobert Kaiser

Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6308
Author(s):  
Gunnar Ritt ◽  
Bastian Schwarz ◽  
Bernd Eberle

We present our efforts on estimating light scattering characteristics from commercial off-the-shelf (COTS) camera lenses in order to deduce thereof a set of generic scattering parameters valid for a specific lens class (double Gauss lenses). In previous investigations, we developed a simplified theoretical light scattering model to estimate the irradiance distribution in the focal plane of a camera lens. This theoretical model is based on a 3-parameter bidirectional scattering distribution function (BSDF), which describes light scattering from rough surfaces of the optical elements. Ordinarily, the three scatter parameters of the BSDF are not known for COTS camera lenses, which makes it necessary to assess them by own experiments. Besides the experimental setup and the measurement process, we present in detail the subsequent data exploitation. From measurements on seven COTS camera lenses, we deduced a generic set of scatter parameters. For a deeper analysis, the results of our measurements have also been compared with the output of an optical engineering software. Together with our theoretical model, now stray light calculations can be accomplished even then, when specific scatter parameters are not available from elsewhere. In addition, the light scattering analyses also allow considering the glare vulnerability of optical systems in terms of laser safety.


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Yueqiang Hu ◽  
Xuhao Luo ◽  
Yiqin Chen ◽  
Qing Liu ◽  
Xin Li ◽  
...  

Abstract Metasurfaces enable the design of optical elements by engineering the wavefront of light at the subwavelength scale. Due to their ultrathin and compact characteristics, metasurfaces possess great potential to integrate multiple functions in optoelectronic systems for optical device miniaturisation. However, current research based on multiplexing in the 2D plane has not fully utilised the capabilities of metasurfaces for multi-tasking applications. Here, we demonstrate a 3D-integrated metasurface device by stacking a hologram metasurface on a monolithic Fabry–Pérot cavity-based colour filter microarray to simultaneously achieve low-crosstalk, polarisation-independent, high-efficiency, full-colour holography, and microprint. The dual functions of the device outline a novel scheme for data recording, security encryption, colour displays, and information processing. Our 3D integration concept can be extended to achieve multi-tasking flat optical systems by including a variety of functional metasurface layers, such as polarizers, metalenses, and others.


Author(s):  
I. I. Bayneva ◽  
N. S. Komarov

The article discusses optical systems for LED lighting devices, the principles of the propagation of rays in lenses of various designs. Analyzed the features of the secondary use of the optical elements in the form of lenses and prisms for different LED emission patterns in space. Considered the features and problems of calculation of the secondary optical systems. Problems and prospects of application are considered, research and computer modeling of optics, which is used to form the required light distribution in LED light devices. Computer modeling technologies and the mathematical methods that underlie them determine the possibility of developing such optical systems in lighting installations. The article considers the numerical Monte Carlo simulation method, which allows one to organize ray tracing modeling in optical systems. The TracePro software package for modeling and research of lighting devices and their optical elements allows you to automate the stage of their calculation and design, this significantly reduces the cost of developing new products. The prototyping of three-dimensional models of lens systems opens up great opportunities for manufacturers of optics for LEDs, allows research on prototypes planned for production of serial products.


2009 ◽  
Author(s):  
Xianying Ge ◽  
Tian Lan ◽  
Yinchao Zhang ◽  
Guoqiang Ni

2021 ◽  
Author(s):  
Gabriel Moagar-Poladian ◽  
Catalin Tibeica

Abstract Additive manufacturing technologies have reached a point where ready-to-use items are directly produced from a PC-stored data file. Among these technologies, selective laser sintering has become a mature technology able to fabricate complex geometric structures using a variety of materials. Despite the versatility of this technology, it also has some drawbacks. One of those limitations, of major concern for building optical elements, is the step-like structure of the surface specific to the layer-by-layer building. In our paper, we present extensive full-wave electromagnetic calculations that consider the effect of those steps on the optical behaviour of refractive lenses made for the THz spectral domain. Our results show that at least up to 1.5 THz, the additively manufactured, stepwise lens behaves very close to its ideally smooth surface counterpart.


Sign in / Sign up

Export Citation Format

Share Document