Underwater active polarization imaging algorithm based on low-rank sparse decomposition

2021 ◽  
Author(s):  
Xiaohuan Li ◽  
Xia Wang ◽  
Zihang Su
2020 ◽  
Vol 523 ◽  
pp. 14-37 ◽  
Author(s):  
Huafeng Li ◽  
Xiaoge He ◽  
Zhengtao Yu ◽  
Jiebo Luo

2018 ◽  
Vol 8 (9) ◽  
pp. 1628 ◽  
Author(s):  
Shiyang Zhou ◽  
Shiqian Wu ◽  
Huaiguang Liu ◽  
Yang Lu ◽  
Nianzong Hu

Surface defect segmentation supports real-time surface defect detection system of steel sheet by reducing redundant information and highlighting the critical defect regions for high-level image understanding. Existing defect segmentation methods usually lack adaptiveness to different shape, size and scale of the defect object. Based on the observation that the defective area can be regarded as the salient part of image, a saliency detection model using double low-rank and sparse decomposition (DLRSD) is proposed for surface defect segmentation. The proposed method adopts a low-rank assumption which characterizes the defective sub-regions and defect-free background sub-regions respectively. In addition, DLRSD model uses sparse constrains for background sub-regions so as to improve the robustness to noise and uneven illumination simultaneously. Then the Laplacian regularization among spatially adjacent sub-regions is incorporated into the DLRSD model in order to uniformly highlight the defect object. Our proposed DLRSD-based segmentation method consists of three steps: firstly, using DLRSD model to obtain the defect foreground image; then, enhancing the foreground image to establish the good foundation for segmentation; finally, the Otsu’s method is used to choose an optimal threshold automatically for segmentation. Experimental results demonstrate that the proposed method outperforms state-of-the-art approaches in terms of both subjective and objective tests. Meanwhile, the proposed method is applicable to industrial detection with limited computational resources.


2014 ◽  
Vol 123 ◽  
pp. 14-22 ◽  
Author(s):  
Chunjie Zhang ◽  
Jing Liu ◽  
Chao Liang ◽  
Zhe Xue ◽  
Junbiao Pang ◽  
...  

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 50223-50231 ◽  
Author(s):  
Jiaju Tan ◽  
Qili Zhao ◽  
Xuemei Guo ◽  
Xin Zhao ◽  
Guoli Wang

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Cheng Zhang ◽  
Dan He

The urban data provides a wealth of information that can support the life and work for people. In this work, we research the object saliency detection in optical remote sensing images, which is conducive to the interpretation of urban scenes. Saliency detection selects the regions with important information in the remote sensing images, which severely imitates the human visual system. It plays a powerful role in other image processing. It has successfully made great achievements in change detection, object tracking, temperature reversal, and other tasks. The traditional method has some disadvantages such as poor robustness and high computational complexity. Therefore, this paper proposes a deep multiscale fusion method via low-rank sparse decomposition for object saliency detection in optical remote sensing images. First, we execute multiscale segmentation for remote sensing images. Then, we calculate the saliency value, and the proposal region is generated. The superpixel blocks of the remaining proposal regions of the segmentation map are input into the convolutional neural network. By extracting the depth feature, the saliency value is calculated and the proposal regions are updated. The feature transformation matrix is obtained based on the gradient descent method, and the high-level semantic prior knowledge is obtained by using the convolutional neural network. The process is iterated continuously to obtain the saliency map at each scale. The low-rank sparse decomposition of the transformed matrix is carried out by robust principal component analysis. Finally, the weight cellular automata method is utilized to fuse the multiscale saliency graphs and the saliency map calculated according to the sparse noise obtained by decomposition. Meanwhile, the object priors knowledge can filter most of the background information, reduce unnecessary depth feature extraction, and meaningfully improve the saliency detection rate. The experiment results show that the proposed method can effectively improve the detection effect compared to other deep learning methods.


Sign in / Sign up

Export Citation Format

Share Document