Fluorescence-based handheld imaging device for in-vivo detection of oral precancer

2021 ◽  
Author(s):  
Amar Nath Sah ◽  
Pavan Kumar ◽  
Asima Pradhan
2019 ◽  
Vol 34 (6) ◽  
pp. 1243-1251 ◽  
Author(s):  
Pavan Kumar ◽  
Surendra Kumar Kanaujia ◽  
Ashutosh Singh ◽  
Asima Pradhan

2008 ◽  
Vol 13 (2) ◽  
pp. 024019 ◽  
Author(s):  
Darren Roblyer ◽  
Rebecca Richards-Kortum ◽  
Konstantin Sokolov ◽  
Adel K. El-Naggar ◽  
Michelle D. Williams ◽  
...  

1991 ◽  
Vol 65 (04) ◽  
pp. 432-437 ◽  
Author(s):  
A W J Stuttle ◽  
M J Powling ◽  
J M Ritter ◽  
R M Hardisty

SummaryThe anti-platelet monoclonal antibody P256 is currently undergoing development for in vivo detection of thrombus. We have examined the actions of P256 and two fragments on human platelet function. P256, and its divalent fragment, caused aggregation at concentrations of 10−9−3 × 10−8 M. A monovalent fragment of P256 did not cause aggregation at concentrations up to 10−7 M. P256–induced platelet aggregation was dependent upon extracellular calcium ions as assessed by quin2 fluorescence. Indomethacin partially inhibited platelet aggregation and completely inhibited intracellular calcium mobilisation. Apyrase caused partial inhibition of aggregation. Aggregation induced by the divalent fragment was dependent upon fibrinogen and was inhibited by prostacyclin. Aggregation induced by the whole antibody was only partially dependent upon fibrinogen, but was also inhibited by prostacyclin. P256 whole antibody was shown, by flow cytometry, to induce fibrinogen binding to indomethacin treated platelets. Monovalent P256 was shown to be a specific antagonist for aggregation induced by the divalent forms. In–111–labelled monovalent fragment bound to gel-filtered platelets in a saturable and displaceable manner. Monovalent P256 represents a safer form for in vivo applications


2019 ◽  
Vol 15 (5) ◽  
pp. 567-574
Author(s):  
Huck Jun Hong ◽  
Suw Young Ly

Background: Tetrodotoxin (TTX) is a biosynthesized neurotoxin that exhibits powerful anticancer and analgesic abilities by inhibiting voltage-gated sodium channels that are crucial for cancer metastasis and pain delivery. However, for the toxin’s future medical applications to come true, accurate, inexpensive, and real-time in vivo detection of TTX remains as a fundamental step. Methods: In this study, highly purified TTX extracted from organs of Takifugu rubripes was injected and detected in vivo of mouse organs (liver, heart, and intestines) using Cyclic Voltammetry (CV) and Square Wave Anodic Stripping Voltammetry (SWASV) for the first time. In vivo detection of TTX was performed with auxiliary, reference, and working herring sperm DNA-immobilized carbon nanotube sensor systems. Results: DNA-immobilization and optimization of amplitude (V), stripping time (sec), increment (mV), and frequency (Hz) parameters for utilized sensors amplified detected peak currents, while highly sensitive in vivo detection limits, 3.43 µg L-1 for CV and 1.21 µg L-1 for SWASV, were attained. Developed sensors herein were confirmed to be more sensitive and selective than conventional graphite rodelectrodes modified likewise. A linear relationship was observed between injected TTX concentration and anodic spike peak height. Microscopic examination displayed coagulation and abnormalities in mouse organs, confirming the powerful neurotoxicity of extracted TTX. Conclusion: These results established the diagnostic measures for TTX detection regarding in vivo application of neurotoxin-deviated anticancer agents and analgesics, as well as TTX from food poisoning and environmental contamination.


ACS Sensors ◽  
2021 ◽  
Author(s):  
Xiaofang Wang ◽  
Tianci Xu ◽  
Yue Zhang ◽  
Nan Gao ◽  
Taotao Feng ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 146
Author(s):  
Rocío Jurado ◽  
Natividad Gálvez

The coupling of proteins that can assemble, recognise or mineralise specific inorganic species is a promising strategy for the synthesis of nanoscale materials with a controllable morphology and functionality. Herein, we report that apoferritin protein amyloid fibrils (APO) have the ability to assemble and/or synthesise various metal and metal compound nanoparticles (NPs). As such, we prepared metal NP–protein hybrid bioconjugates with improved optical and magnetic properties by coupling diverse gold (AuNPs) and magnetic iron oxide nanoparticles (MNPs) to apoferritin amyloid fibrils and compared them to the well-known β-lactoglobulin (BLG) protein. In a second approach, we used of solvent-exposed metal-binding residues in APO amyloid fibrils as nanoreactors for the in situ synthesis of gold, silver (AgNPs) and palladium nanoparticles (PdNPs). Our results demonstrate, the versatile nature of the APO biotemplate and its high potential for preparing functional hybrid bionanomaterials. Specifically, the use of apoferritin fibrils as vectors to integrate magnetic MNPs or AuNPs is a promising synthetic strategy for the preparation of specific contrast agents for early in vivo detection using various bioimaging techniques.


Sign in / Sign up

Export Citation Format

Share Document