High-quality dense SLAM approach from deep learning and monocular-inertial measurements

2021 ◽  
Author(s):  
Zhimin Duan ◽  
Bowen Hu ◽  
Hujie Yu ◽  
Chen Chen
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yanyang Guo ◽  
Hanzhou Wu ◽  
Xinpeng Zhang

AbstractSocial media plays an increasingly important role in providing information and social support to users. Due to the easy dissemination of content, as well as difficulty to track on the social network, we are motivated to study the way of concealing sensitive messages in this channel with high confidentiality. In this paper, we design a steganographic visual stories generation model that enables users to automatically post stego status on social media without any direct user intervention and use the mutual-perceived joint attention (MPJA) to maintain the imperceptibility of stego text. We demonstrate our approach on the visual storytelling (VIST) dataset and show that it yields high-quality steganographic texts. Since the proposed work realizes steganography by auto-generating visual story using deep learning, it enables us to move steganography to the real-world online social networks with intelligent steganographic bots.


2020 ◽  
Vol 6 (3) ◽  
pp. 035029
Author(s):  
Serdar Charyyev ◽  
Yang Lei ◽  
Joseph Harms ◽  
Bree Eaton ◽  
Mark McDonald ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 649
Author(s):  
Yifeng Liu ◽  
Wei Zhang ◽  
Wenhao Du

Deep learning based on a large number of high-quality data plays an important role in many industries. However, deep learning is hard to directly embed in the real-time system, because the data accumulation of the system depends on real-time acquisitions. However, the analysis tasks of such systems need to be carried out in real time, which makes it impossible to complete the analysis tasks by accumulating data for a long time. In order to solve the problems of high-quality data accumulation, high timeliness of the data analysis, and difficulty in embedding deep-learning algorithms directly in real-time systems, this paper proposes a new progressive deep-learning framework and conducts experiments on image recognition. The experimental results show that the proposed framework is effective and performs well and can reach a conclusion similar to the deep-learning framework based on large-scale data.


Author(s):  
Yue Jiang ◽  
Zhouhui Lian ◽  
Yingmin Tang ◽  
Jianguo Xiao

Automatic generation of Chinese fonts that consist of large numbers of glyphs with complicated structures is now still a challenging and ongoing problem in areas of AI and Computer Graphics (CG). Traditional CG-based methods typically rely heavily on manual interventions, while recentlypopularized deep learning-based end-to-end approaches often obtain synthesis results with incorrect structures and/or serious artifacts. To address those problems, this paper proposes a structure-guided Chinese font generation system, SCFont, by using deep stacked networks. The key idea is to integrate the domain knowledge of Chinese characters with deep generative networks to ensure that high-quality glyphs with correct structures can be synthesized. More specifically, we first apply a CNN model to learn how to transfer the writing trajectories with separated strokes in the reference font style into those in the target style. Then, we train another CNN model learning how to recover shape details on the contour for synthesized writing trajectories. Experimental results validate the superiority of the proposed SCFont compared to the state of the art in both visual and quantitative assessments.


2021 ◽  
Author(s):  
Rui Zeng ◽  
Jinglei Lv ◽  
He Wang ◽  
Luping Zhou ◽  
Michael Barnett ◽  
...  

ABSTRACTMapping the human connectome using fibre-tracking permits the study of brain connectivity and yields new insights into neuroscience. However, reliable connectome reconstruction using diffusion magnetic resonance imaging (dMRI) data acquired by widely available clinical protocols remains challenging, thus limiting the connectome/tractography clinical applications. Here we develop fibre orientation distribution (FOD) network (FOD-Net), a deep-learning-based framework for FOD angular super-resolution. Our method enhances the angular resolution of FOD images computed from common clinical-quality dMRI data, to obtain FODs with quality comparable to those produced from advanced research scanners. Super-resolved FOD images enable superior tractography and structural connectome reconstruction from clinical protocols. The method was trained and tested with high-quality data from the Human Connectome Project (HCP) and further validated with a local clinical 3.0T scanner. Using this method, we improve the angular resolution of FOD images acquired with typical single-shell low-angular-resolution dMRI data (e.g., 32 directions, b=1000 s/mm2) to approximate the quality of FODs derived from time-consuming, multi-shell high-angular-resolution dMRI research protocols. We also demonstrate tractography improvement, removing spurious connections and bridging missing connections. We further demonstrate that connectomes reconstructed by super-resolved FOD achieve comparable results to those obtained with more advanced dMRI acquisition protocols, on both HCP and clinical 3T data. Advances in deep-learning approaches used in FOD-Net facilitate the generation of high quality tractography/connectome analysis from existing clinical MRI environments.


2019 ◽  
Author(s):  
Hongyang Li ◽  
Yuanfang Guan

AbstractSleep arousals are transient periods of wakefulness punctuated into sleep. Excessive sleep arousals are associated with many negative effects including daytime sleepiness and sleep disorders. High-quality annotation of polysomnographic recordings is crucial for the diagnosis of sleep arousal disorders. Currently, sleep arousals are mainly annotated by human experts through looking at millions of data points manually, which requires considerable time and effort. Here we present a deep learning approach, DeepSleep, which ranked first in the 2018 PhysioNet Challenge for automatically segmenting sleep arousal regions based on polysomnographic recordings. DeepSleep features accurate (area under receiver operating characteristic curve of 0.93), high-resolution (5-millisecond resolution), and fast (10 seconds per sleep record) delineation of sleep arousals.


Sign in / Sign up

Export Citation Format

Share Document