Action recognition system for security monitoring

2021 ◽  
Author(s):  
Chao Yang ◽  
Dongyue Chen ◽  
Zhiming Xu
2015 ◽  
Vol 42 (1) ◽  
pp. 138-143
Author(s):  
ByoungChul Ko ◽  
Mincheol Hwang ◽  
Jae-Yeal Nam

Author(s):  
MARC BOSCH-JORGE ◽  
ANTONIO-JOSÉ SÁNCHEZ-SALMERÓN ◽  
CARLOS RICOLFE-VIALA

The aim of this work is to present a visual-based human action recognition system which is adapted to constrained embedded devices, such as smart phones. Basically, vision-based human action recognition is a combination of feature-tracking, descriptor-extraction and subsequent classification of image representations, with a color-based identification tool to distinguish between multiple human subjects. Simple descriptors sets were evaluated to optimize recognition rate and performance and two dimensional (2D) descriptors were found to be effective. These sets installed on the latest phones can recognize human actions in videos in less than one second with a success rate of over 82%.


2012 ◽  
Vol 22 (06) ◽  
pp. 1250028 ◽  
Author(s):  
K. SUBRAMANIAN ◽  
S. SURESH

We propose a sequential Meta-Cognitive learning algorithm for Neuro-Fuzzy Inference System (McFIS) to efficiently recognize human actions from video sequence. Optical flow information between two consecutive image planes can represent actions hierarchically from local pixel level to global object level, and hence are used to describe the human action in McFIS classifier. McFIS classifier and its sequential learning algorithm is developed based on the principles of self-regulation observed in human meta-cognition. McFIS decides on what-to-learn, when-to-learn and how-to-learn based on the knowledge stored in the classifier and the information contained in the new training samples. The sequential learning algorithm of McFIS is controlled and monitored by the meta-cognitive components which uses class-specific, knowledge based criteria along with self-regulatory thresholds to decide on one of the following strategies: (i) Sample deletion (ii) Sample learning and (iii) Sample reserve. Performance of proposed McFIS based human action recognition system is evaluated using benchmark Weizmann and KTH video sequences. The simulation results are compared with well known SVM classifier and also with state-of-the-art action recognition results reported in the literature. The results clearly indicates McFIS action recognition system achieves better performances with minimal computational effort.


Sign in / Sign up

Export Citation Format

Share Document