Performance of wireless infrared transmission systems considering both ambient light interference and intersymbol interference due to multipath dispersion

Author(s):  
Antonio M. Tavares ◽  
Rui J. M. T. Valadas ◽  
A. M. Oliveira Duarte
1996 ◽  
Vol 143 (6) ◽  
pp. 339-346 ◽  
Author(s):  
A.J.C. Moreira ◽  
R.T. Valadas ◽  
A.M. de Oliveira Duarte

2021 ◽  
Author(s):  
Balakanthan Balendran

Infrared system provides a feasible alternative to radio system for indoor wireless communication. Direct spread CDMA format is a promising candidate for infrared transmission system. In indoor systems, transmission is severely impaired by noise and interference produced by artificial light. In this thesis, the performance of the DS CDMA indoor wireless infrared system on diffuse channels is analyzed by taking the effects of inter symbol interference (ISI) and electronic ballast florescent light interference into account. Moreover, to mitigate the effects of ISI and electronic ballast florescent light interference, an adaptive filter technique is proposed for noise cancellation and equalization. This is done by considering a ceiling bounce model for the channel and electronic ballast florescent light for noise. Analytical and simulation results show 7dB improvement in SINR and 10-15 times improvement in BER.


2021 ◽  
Author(s):  
Balakanthan Balendran

Infrared system provides a feasible alternative to radio system for indoor wireless communication. Direct spread CDMA format is a promising candidate for infrared transmission system. In indoor systems, transmission is severely impaired by noise and interference produced by artificial light. In this thesis, the performance of the DS CDMA indoor wireless infrared system on diffuse channels is analyzed by taking the effects of inter symbol interference (ISI) and electronic ballast florescent light interference into account. Moreover, to mitigate the effects of ISI and electronic ballast florescent light interference, an adaptive filter technique is proposed for noise cancellation and equalization. This is done by considering a ceiling bounce model for the channel and electronic ballast florescent light for noise. Analytical and simulation results show 7dB improvement in SINR and 10-15 times improvement in BER.


2020 ◽  
pp. 87-97
Author(s):  
Sourish Chatterjee ◽  
Biswanath Roy

In an office space, an LED-based lighting system allows you to perform the function of a data transmitter. This article discusses the cost-effective design and development of a data-enabled LED driver that can transmit data along with its receiving part. In addition, this paper clearly outlines the application of the proposed VLC system in an office environment where ambient light interference is a severe issue of concern. The result shows satisfactory lighting characteristics in general for this area in terms of average horizontal illuminance and illuminance uniformity. At the same time, to evaluate real-time and static communication performance, Arduino interfaced MATLAB Simulink model is developed, which shows good communication performance in terms of BER (10–7) even in presence of ambient light noise with 6 dB signal to interference plus noise ratio. Our designed system is also flexible to work as a standalone lighting system, whenever data communication is not required.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Sourish Chatterjee ◽  
Biswanath Roy

AbstractIn recent time of looming radio frequency (RF) spectrum crisis, visible light communication using lighting infrastructure emerged as a potential alternative at an indoor environment. This paper addresses the setback associated with ambient light interference in an indoor Visible Light Communication (VLC) system to ensure joint communication and illumination performance inside an office room. A novel VLC architecture with suitable white light emitting diode (WLED) luminaire arrangement is presented to minimize the dispersion of signal to interference plus noise ratio (SINR) across the room. Luminaires are categorized in two groups viz. data transmitting illuminants and illuminants for lighting purpose. The first group is dedicated to transmit data as well as serves the purpose of illumination. The other set creates only ambient illumination to achieve quality lighting attributes. The proposed forward error corrected receiver configuration discards the ambient light noise originated by the illuminants that serve the ambient illumination. Tail biting convolutional encoder and viterbi decoder are used at the encoding section of the transmitter and decoding section of the receiver respectively to improve bit error rate. Results obtained through MATLAB simulation shows better average bit error rate (BER) in the order of 10−8 measured at uniformly distributed 25 grid points over the working plane. At the same time achieved average horizontal illuminance with good uniformity comply with ISO recommendation.


Sign in / Sign up

Export Citation Format

Share Document