Application of spatial likelihood functions to multicamera object localization

Author(s):  
Parham Aarabi
2020 ◽  
Author(s):  
Gopi Krishna Erabati

The technology in current research scenario is marching towards automation forhigher productivity with accurate and precise product development. Vision andRobotics are domains which work to create autonomous systems and are the keytechnology in quest for mass productivity. The automation in an industry canbe achieved by detecting interactive objects and estimating the pose to manipulatethem. Therefore the object localization ( i.e., pose) includes position andorientation of object, has profound ?significance. The application of object poseestimation varies from industry automation to entertainment industry and fromhealth care to surveillance. The objective of pose estimation of objects is verysigni?cant in many cases, like in order for the robots to manipulate the objects,for accurate rendering of Augmented Reality (AR) among others.This thesis tries to solve the issue of object pose estimation using 3D dataof scene acquired from 3D sensors (e.g. Kinect, Orbec Astra Pro among others).The 3D data has an advantage of independence from object texture and invarianceto illumination. The proposal is divided into two phases : An o?ine phasewhere the 3D model template of the object ( for estimation of pose) is built usingIterative Closest Point (ICP) algorithm. And an online phase where the pose ofthe object is estimated by aligning the scene to the model using ICP, providedwith an initial alignment using 3D descriptors (like Fast Point Feature Transform(FPFH)).The approach we develop is to be integrated on two di?erent platforms :1)Humanoid robot `Pyrene' which has Orbec Astra Pro 3D sensor for data acquisition,and 2)Unmanned Aerial Vehicle (UAV) which has Intel Realsense Euclidon it. The datasets of objects (like electric drill, brick, a small cylinder, cake box)are acquired using Microsoft Kinect, Orbec Astra Pro and Intel RealSense Euclidsensors to test the performance of this technique. The objects which are used totest this approach are the ones which are used by robot. This technique is testedin two scenarios, fi?rstly, when the object is on the table and secondly when theobject is held in hand by a person. The range of objects from the sensor is 0.6to 1.6m. This technique could handle occlusions of the object by hand (when wehold the object), as ICP can work even if partial object is visible in the scene.


ROBOT ◽  
2013 ◽  
Vol 35 (4) ◽  
pp. 439 ◽  
Author(s):  
Lin WANG ◽  
Jianfu CAO ◽  
Chongzhao HAN

Geosciences ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 150
Author(s):  
Nilgün Güdük ◽  
Miguel de la Varga ◽  
Janne Kaukolinna ◽  
Florian Wellmann

Structural geological models are widely used to represent relevant geological interfaces and property distributions in the subsurface. Considering the inherent uncertainty of these models, the non-uniqueness of geophysical inverse problems, and the growing availability of data, there is a need for methods that integrate different types of data consistently and consider the uncertainties quantitatively. Probabilistic inference provides a suitable tool for this purpose. Using a Bayesian framework, geological modeling can be considered as an integral part of the inversion and thereby naturally constrain geophysical inversion procedures. This integration prevents geologically unrealistic results and provides the opportunity to include geological and geophysical information in the inversion. This information can be from different sources and is added to the framework through likelihood functions. We applied this methodology to the structurally complex Kevitsa deposit in Finland. We started with an interpretation-based 3D geological model and defined the uncertainties in our geological model through probability density functions. Airborne magnetic data and geological interpretations of borehole data were used to define geophysical and geological likelihoods, respectively. The geophysical data were linked to the uncertain structural parameters through the rock properties. The result of the inverse problem was an ensemble of realized models. These structural models and their uncertainties are visualized using information entropy, which allows for quantitative analysis. Our results show that with our methodology, we can use well-defined likelihood functions to add meaningful information to our initial model without requiring a computationally-heavy full grid inversion, discrepancies between model and data are spotted more easily, and the complementary strength of different types of data can be integrated into one framework.


2021 ◽  
pp. 1-25
Author(s):  
Yu-Chin Hsu ◽  
Ji-Liang Shiu

Under a Mundlak-type correlated random effect (CRE) specification, we first show that the average likelihood of a parametric nonlinear panel data model is the convolution of the conditional distribution of the model and the distribution of the unobserved heterogeneity. Hence, the distribution of the unobserved heterogeneity can be recovered by means of a Fourier transformation without imposing a distributional assumption on the CRE specification. We subsequently construct a semiparametric family of average likelihood functions of observables by combining the conditional distribution of the model and the recovered distribution of the unobserved heterogeneity, and show that the parameters in the nonlinear panel data model and in the CRE specification are identifiable. Based on the identification result, we propose a sieve maximum likelihood estimator. Compared with the conventional parametric CRE approaches, the advantage of our method is that it is not subject to misspecification on the distribution of the CRE. Furthermore, we show that the average partial effects are identifiable and extend our results to dynamic nonlinear panel data models.


Genetics ◽  
1997 ◽  
Vol 147 (4) ◽  
pp. 1855-1861 ◽  
Author(s):  
Montgomery Slatkin ◽  
Bruce Rannala

Abstract A theory is developed that provides the sampling distribution of low frequency alleles at a single locus under the assumption that each allele is the result of a unique mutation. The numbers of copies of each allele is assumed to follow a linear birth-death process with sampling. If the population is of constant size, standard results from theory of birth-death processes show that the distribution of numbers of copies of each allele is logarithmic and that the joint distribution of numbers of copies of k alleles found in a sample of size n follows the Ewens sampling distribution. If the population from which the sample was obtained was increasing in size, if there are different selective classes of alleles, or if there are differences in penetrance among alleles, the Ewens distribution no longer applies. Likelihood functions for a given set of observations are obtained under different alternative hypotheses. These results are applied to published data from the BRCA1 locus (associated with early onset breast cancer) and the factor VIII locus (associated with hemophilia A) in humans. In both cases, the sampling distribution of alleles allows rejection of the null hypothesis, but relatively small deviations from the null model can account for the data. In particular, roughly the same population growth rate appears consistent with both data sets.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 692
Author(s):  
Wen-Chia Tsai ◽  
Jhih-Sheng Lai ◽  
Kuan-Chou Chen ◽  
Vinay M.Shivanna ◽  
Jiun-In Guo

This paper proposes a lightweight moving object prediction system to detect and recognize pedestrian crossings, vehicles cutting-in, and vehicles ahead applying emergency brakes based on a 3D Convolution network for behavior prediction. The proposed design significantly improves the performance of the conventional 3D convolution network (C3D) adapted to predict the behaviors employing behavior recognition network capable of performing object localization, which is pivotal in detecting the numerous moving objects’ behaviors, combining and verifying the detected objects with the results of the YOLO v3 detection model with that of the proposed C3D model. Since the proposed system is a lightweight CNN model requiring far lesser parameters, it can be efficiently realized on an embedded system for real-time applications. The proposed lightweight C3D model achieves 10 frames per second (FPS) on a NVIDIA Jetson AGX Xavier and yields over 92.8% accuracy in recognizing pedestrian crossing, over 94.3% accuracy in detecting vehicle cutting-in behavior, and over 95% accuracy for vehicles applying emergency brakes.


Sign in / Sign up

Export Citation Format

Share Document