scholarly journals Scanning imaging absorption spectrometer for atmospheric chartography

Author(s):  
John P. Burrows ◽  
Kelly V. Chance
2005 ◽  
Vol 5 (3) ◽  
pp. 3367-3389 ◽  
Author(s):  
M. de Graaf ◽  
P. Stammes

Abstract. The validity of the Absorbing Aerosol Index (AAI) product from the SCanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY (SCIAMACHY) is discussed. The operational SCIAMACHY AAI product suffers from calibration errors in the reflectance as measured by SCIAMACHY and design errors. Therefore, the AAI product was recalculated, compensating for the errors, with reflectance data from the start of measurements of SCIAMACHY until December 2004. Appropriate correction factors were determined for the UV to correct for the radiometric error in the SCIAMACHY reflectances. The algorithm was provided with LookUp Tables in which a good representation of polarisation effects was incorporated, as opposed to the LookUp Tables of the operational product, in which polarisation effects were not accounted for. The results are presented, their validity discussed, and compared to the operational product. The AAI is very sensitive to calibration errors and can be used to monitor calibration errors and changes. From 2004 onwards, the new SCIAMACHY AAI is suitable to add to the continuation of the long-term AAI record. Recommendations are given for improvement of the operational AAI product.


2005 ◽  
Vol 5 (2) ◽  
pp. 1995-2015 ◽  
Author(s):  
A. A. Kokhanovsky ◽  
V. V. Rozanov ◽  
T. Nauss ◽  
C. Reudenbach ◽  
J. S. Daniel ◽  
...  

Abstract. A recently developed cloud retrieval algorithm for the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) is briefly presented and validated using independent and well tested cloud retrieval techniques based on the look-up-table approach for MODeration resolutIon Spectrometer data. The results of the cloud top height retrievals using measurements in the oxygen A-band by an airborne crossed Czerny-Turner spectrograph and the Global Ozone Monitoring Experiment (GOME) instrument are compared with those obtained from airborne dual photography and retrievals using data from Along Track Scanning Radiometer (ATSR-2), respectively.


2009 ◽  
Vol 2 (1) ◽  
pp. 273-285 ◽  
Author(s):  
F. Hendrick ◽  
A. Rozanov ◽  
P. V. Johnston ◽  
H. Bovensmann ◽  
M. De Mazière ◽  
...  

Abstract. Vertical profiles of stratospheric bromine monoxide (BrO) retrieved daily from ENVISAT/SCIAMACHY (ENVIronmental SATellite/SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) limb scatter data and from ground-based UV-visible observations performed at Harestua (60° N, 11° E), Observatoire de Haute-Provence (44° N, 5.5° E), and Lauder (45° S, 170° E) are compared in the 15–27 km altitude range for the 2002–2006, 2005–2006, and 2002–2005 periods, respectively. At the three stations, the SCIAMACHY and ground-based UV-visible mean profiles agree reasonably well, with relative difference smaller than 23%. When comparing the BrO partial columns, the agreement obtained is good, with mean relative differences smaller than 11% and corresponding standard deviations in the 13–19% range. These comparison results are obtained, however, using different BrO cross sections in SCIAMACHY limb and ground-based UV-visible retrievals. The seasonal variation of the BrO columns at the three stations is consistently captured by both retrievals as well as large BrO column events occurring during the winter and early spring at Harestua which are associated with bromine activation.


2014 ◽  
Vol 7 (8) ◽  
pp. 2631-2644 ◽  
Author(s):  
H. Nguyen ◽  
G. Osterman ◽  
D. Wunch ◽  
C. O'Dell ◽  
L. Mandrake ◽  
...  

Abstract. Satellite measurements are often compared with higher-precision ground-based measurements as part of validation efforts. The satellite soundings are rarely perfectly coincident in space and time with the ground-based measurements, so a colocation methodology is needed to aggregate "nearby" soundings into what the instrument would have seen at the location and time of interest. We are particularly interested in validation efforts for satellite-retrieved total column carbon dioxide (XCO2), where XCO2 data from Greenhouse Gas Observing Satellite (GOSAT) retrievals (ACOS, NIES, RemoteC, PPDF, etc.) or SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) are often colocated and compared to ground-based column XCO2 measurement from Total Carbon Column Observing Network (TCCON). Current colocation methodologies for comparing satellite measurements of total column dry-air mole fractions of CO2 (XCO2) with ground-based measurements typically involve locating and averaging the satellite measurements within a latitudinal, longitudinal, and temporal window. We examine a geostatistical colocation methodology that takes a weighted average of satellite observations depending on the "distance" of each observation from a ground-based location of interest. The "distance" function that we use is a modified Euclidian distance with respect to latitude, longitude, time, and midtropospheric temperature at 700 hPa. We apply this methodology to XCO2 retrieved from GOSAT spectra by the ACOS team, cross-validate the results to TCCON XCO2 ground-based data, and present some comparisons between our methodology and standard existing colocation methods showing that, in general, geostatistical colocation produces smaller mean-squared error.


1995 ◽  
Vol 35 (7) ◽  
pp. 445-451 ◽  
Author(s):  
J.P. Burrows ◽  
E. Hölzle ◽  
A.P.H. Goede ◽  
H. Visser ◽  
W. Fricke

2008 ◽  
Vol 1 (1) ◽  
pp. 451-480 ◽  
Author(s):  
F. Hendrick ◽  
A. Rozanov ◽  
P. V. Johnston ◽  
H. Bovensmann ◽  
M. De Mazière ◽  
...  

Abstract. Vertical profiles of stratospheric bromine monoxide (BrO) daily retrieved from ENVISAT/SCIAMACHY (ENVIronmental SATellite/SCanning Imaging Absorption spectrometer for Atmospheric CHartographY) limb scatter data and from ground-based UV-visible observations performed at Harestua (60° N, 11° E), Observatoire de Haute-Provence (44° N, 5.5° E), and Lauder (45° S, 170° E) are compared in the 15–27 km altitude range for the period from 2002 until 2006. At the three stations, the SCIAMACHY and ground-based UV-visible profiles agree reasonably well, with relative difference smaller than 23% on average. When comparing the BrO partial columns, the agreement obtained is good, with mean relative differences smaller than 11% and corresponding standard deviations in the 13–19% range. The seasonal variation of the BrO columns at the three stations is consistently captured by both retrievals as well as large BrO column events occurring during the winter and early spring at Harestua which are associated with chlorine activation.


Sign in / Sign up

Export Citation Format

Share Document