Real-time measurement of in-vitro and in-vivo blood flow with Fourier domain optical coherence tomography

2004 ◽  
Author(s):  
Rainer Leitgeb ◽  
Leopold Schmetterer ◽  
Wolfgang Drexler ◽  
Fatmire Berisha ◽  
Christoph K. Hitzenberger ◽  
...  
2004 ◽  
Vol 29 (2) ◽  
pp. 171 ◽  
Author(s):  
Rainer A. Leitgeb ◽  
Leopold Schmetterer ◽  
Christoph K. Hitzenberger ◽  
Adolf F. Fercher ◽  
Fatma Berisha ◽  
...  

2003 ◽  
Vol 11 (23) ◽  
pp. 3116 ◽  
Author(s):  
R. A. Leitgeb ◽  
L. Schmetterer ◽  
W. Drexler ◽  
A. F. Fercher ◽  
R. J. Zawadzki ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
P. Timothy Doughty ◽  
Imran Hossain ◽  
Chenggong Gong ◽  
Kayla A. Ponder ◽  
Sandipan Pati ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4554
Author(s):  
Ralph-Alexandru Erdelyi ◽  
Virgil-Florin Duma ◽  
Cosmin Sinescu ◽  
George Mihai Dobre ◽  
Adrian Bradu ◽  
...  

The most common imaging technique for dental diagnoses and treatment monitoring is X-ray imaging, which evolved from the first intraoral radiographs to high-quality three-dimensional (3D) Cone Beam Computed Tomography (CBCT). Other imaging techniques have shown potential, such as Optical Coherence Tomography (OCT). We have recently reported on the boundaries of these two types of techniques, regarding. the dental fields where each one is more appropriate or where they should be both used. The aim of the present study is to explore the unique capabilities of the OCT technique to optimize X-ray units imaging (i.e., in terms of image resolution, radiation dose, or contrast). Two types of commercially available and widely used X-ray units are considered. To adjust their parameters, a protocol is developed to employ OCT images of dental conditions that are documented on high (i.e., less than 10 μm) resolution OCT images (both B-scans/cross sections and 3D reconstructions) but are hardly identified on the 200 to 75 μm resolution panoramic or CBCT radiographs. The optimized calibration of the X-ray unit includes choosing appropriate values for the anode voltage and current intensity of the X-ray tube, as well as the patient’s positioning, in order to reach the highest possible X-rays resolution at a radiation dose that is safe for the patient. The optimization protocol is developed in vitro on OCT images of extracted teeth and is further applied in vivo for each type of dental investigation. Optimized radiographic results are compared with un-optimized previously performed radiographs. Also, we show that OCT can permit a rigorous comparison between two (types of) X-ray units. In conclusion, high-quality dental images are possible using low radiation doses if an optimized protocol, developed using OCT, is applied for each type of dental investigation. Also, there are situations when the X-ray technology has drawbacks for dental diagnosis or treatment assessment. In such situations, OCT proves capable to provide qualitative images.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chenchen Ren ◽  
Xianxu Zeng ◽  
Zhongna Shi ◽  
Chunyan Wang ◽  
Huifen Wang ◽  
...  

AbstractIn this prospective study of an in-vivo cervical examination using optical coherence tomography (OCT), we evaluated the diagnostic value of non-invasive and real-time OCT in cervical precancerous lesions and cancer diagnosis, and determined the characteristics of OCT images. 733 patients from 5 Chinese hospitals were inspected with OCT and colposcopy-directed biopsy. The OCT images were compared with the histological sections to find out the characteristics of various categories of lesions. The OCT images were also interpreted by 3 investigators to make a 2-class classification, and the results were compared against the pathological results. Various structures of the cervical tissue were clearly observed in OCT images, which matched well with the corresponding histological sections. The OCT diagnosis results delivered a sensitivity of 87.0% (95% confidence interval, CI 82.2–90.7%), a specificity of 84.1% (95% CI 80.3–87.2%), and an overall accuracy of 85.1%. Both good consistency of OCT images and histological images and satisfactory diagnosis results were provided by OCT. Due to its features of non-invasion, real-time, and accuracy, OCT is valuable for the in-vivo evaluation of cervical lesions and has the potential to be one of the routine cervical diagnosis methods.


Sign in / Sign up

Export Citation Format

Share Document